988 resultados para biophotons, squeezed light, nonclassical states
Resumo:
We investigate an optical scheme to conditionally engineer quantum states using a beam splitter, homodyne detection, and a squeezed vacuum as an ancillar state. This scheme is efficient in producing non-Gaussian quantum states such as squeezed single photons and superpositions of coherent states (SCSs). We show that a SCS with well defined parity and high fidelity can be generated from a Fock state of n
Resumo:
We present several examples where prominent quantum properties are transferred from a microscopic superposition to thermal states at high temperatures. Our work is motivated by an analogy of Schrodinger's cat paradox, where the state corresponding to the virtual cat is a mixed thermal state with a large average photon number. Remarkably, quantum entanglement can be produced between thermal states with nearly the maximum Bell-inequality violation even when the temperatures of both modes approach infinity.
Resumo:
In 2001 the International Law Commission finally adopted on second reading the Draft Articles on Responsibility of States for Internationally Wrongful Acts with commentaries, bringing to an end nearly 50 years of ILC work on the subject. This article reviews the final group of changes to the text, focusing on the definitions of ‘injury’ and ‘damage’, assurances of non‐repetition in the light of the
Resumo:
As a consequence of the increased incidence of collaborative arrangements between firms, the competitive environment characterising many industries has undergone profound change. It is suggested that rivalry is not necessarily enacted by individual firms according to the traditional mechanisms of direct confrontation in factor and product markets, but rather as collaborative orchestration between a number of participants or network members. Strategic networks are recognised as sets of firms within an industry that exhibit denser strategic linkages among themselves than other firms within the same industry. Based on this, strategic networks are determined according to evidence of strategic alliances between firms comprising the industry. As a result, a single strategic network represents a group of firms closely linked according to collaborative ties. Arguably, the collective outcome of these strategic relationships engineered between firms suggest that the collaborative benefits attributed to interorganisational relationships require closer examination in respect to their propensity to influence rivalry in intraindustry environments. Derived in large from the social sciences, network theory allows for the micro and macro examination of the opportunities and constraints inherent in the structure of relationships in strategic networks, establishing a relational approach upon which the conduct and performance of firms can be more fully understood. Research to date has yet to empirically investigate the relationship between strategic networks and rivalry. The limited research that has been completed utilising a network rationale to investigate competitive patterns in contemporary industry environments has been characterised by a failure to directly measure rivalry. Further, this prior research has typically embedded investigation in industry settings dominated by technological or regulatory imperatives, such as the microprocessor and airline industries. These industries, due to the presence of such imperatives, are arguably more inclined to support the realisation of network rivalry, through subscription to prescribed technological standards (eg., microprocessor industry) or by being bound by regulatory constraints dictating operation within particular market segments (airline industry). In order to counter these weaknesses, the proposition guiding research - Are patterns of rivalry predicted by strategic network membership? – is embedded in the United States Light Vehicles Industry, an industry not dominated by technological or regulatory imperatives. Further, rivalry is directly measured and utilised in research, thus distinguishing this investigation from prior research efforts. The timeframe of investigation is 1993 – 1999, with all research data derived from secondary sources. Strategic networks were defined within the United States Light Vehicles Industry based on evidence of horizontal strategic relationships between firms comprising the industry. The measure of rivalry used to directly ascertain the competitive patterns of industry participants was derived from the traditional Herfindahl Index, modified to account for patterns of rivalry observed at the market segment level. Statistical analyses of the strategic network and rivalry constructs found little evidence to support the contention of network rivalry; indeed, greater levels of rivalry were observed between firms comprising the same strategic network than between firms participating in opposing network structures. Based on these results, patterns of rivalry evidenced in the United States Light Vehicle Industry over the period 1993 – 1999 were not found to be predicted by strategic network membership. The findings generated by this research are in contrast to current theorising in the strategic network – rivalry realm. In this respect, these findings are surprising. The relevance of industry type, in conjunction with prevailing network methodology, provides the basis upon which these findings are contemplated. Overall, this study raises some important questions in relation to the relevancy of the network rivalry rationale, establishing a fruitful avenue for further research.
Resumo:
The State Library of Queensland is delighted to present Lumia: art/light/motion, a culmination of many years of collaboration by the Kuuki collective led by Priscilla Bracks and Gavin Sade. This extraordinary exhibition not only showcases the unique talent of these Queenslanders, it also opens up a world of future possibilities while re-presenting the past and present. These contemporary new media installations sit comfortably within the walls of the library as they are the distinctive products of inquisitive and philosophical minds. In a sense the exhibition highlights the longevity and purposefulness of a cultural learning institution, through the non-traditional use of data, information, research and collection interpretation. The exhibition simultaneously articulates one of our key objectives – to progress the state’s digital agenda. Two academic essays have been commissioned for this joint Kuuki and State Library of Queensland publication. The first is by artist and writer Paul Brown, who has specialised in art, science and technology since the late 1960s and in computational and generative art since the mid 1970s. Brown investigates the history of new media, which is celebrating its 60th anniversary, and clearly places Sade and Bracks at the forefront of this genre nationally. The second essay is by arts writer Linda Carroli, who has delved deeply into the thoughts and processes of the artists to bring to light the complex workings of the artists’ minds. The publication also features an interview Carroli conducted with the artists. This exhibition is playful, informative and contemplative. The audience is invited to play, and consequently to ponder the way we live and the environmental and social implications of our choices. The exhibition tempts us to travel deep into the Antarctic, plunge into the Great Barrier Reef, be swamped by an orchestra of crickets, enter the Charmed world and travel back in time to a Victorian parlour where you can interact with a ‘new-world’ lyrebird and consider a brave new world where our only link to the animal world is with robotic representations. In essence this exhibition is about ideas and knowledge and what better institution than the State Library of Queensland to partner such a project?. State Library is committed to preserving culture, exploring new media and creating new content as a lasting legacy of Queensland for all Queenslanders.
Resumo:
In many instances we find it advantageous to display a quantum optical density matrix as a generalized statistical ensemble of coherent wave fields. The weight functions involved in these constructions turn out to belong to a family of distributions, not always smooth functions. In this paper we investigate this question anew and show how it is related to the problem of expanding an arbitrary state in terms of an overcomplete subfamily of the overcomplete set of coherent states. This provides a relatively transparent derivation of the optical equivalence theorem. An interesting by-product is the discovery of a new class of discrete diagonal representations.
Resumo:
This study explores the decline of terrorism by conducting source-based case studies on two left-wing terrorist campaigns in the 1970s, those of the Rode Jeugd in the Netherlands and the Symbionese Liberation Army in the United States. The purpose of the case studies is to bring more light into the interplay of different external and internal factors in the development of terrorist campaigns. This is done by presenting the history of the two chosen campaigns as narratives from the participants’ points of view, based on interviews with participants and extensive archival material. Organizational resources and dynamics clearly influenced the course of the two campaigns, but in different ways. This divergence derives at least partly from dissimilarities in organizational design and the incentive structure. Comparison of even these two cases shows that organizations using terrorism as a strategy can differ significantly, even when they share ideological orientation, are of the same size and operate in the same time period. Theories on the dynamics of terrorist campaigns would benefit from being more sensitive to this. The study also highlights that the demise of a terrorist organization does not necessarily lead to the decline of the terrorist campaign. Therefore, research should look at the development of terrorist activity beyond the lifespan of a single organization. The collective ideological beliefs and goals functioned primarily as a sustaining force, a lens through which the participants interpreted all developments. On the other hand, it appears that the role of ideology should not be overstated. Namely, not all participants in the campaigns under study fully internalized the radical ideology. Rather, their participation was mainly based on their friendship with other participants. Instead of ideology per se, it is more instructive to look at how those involved described their organization, themselves and their role in the revolutionary struggle. In both cases under study, the choice of the terrorist strategy was not merely a result of a cost-benefit calculation, but an important part of the participants’ self-image. Indeed, the way the groups portrayed themselves corresponded closely with the forms of action that they got involved in. Countermeasures and the lack of support were major reasons for the decline of the campaigns. However, what is noteworthy is that the countermeasures would not have had the same kind of impact had it not been for certain weaknesses of the groups themselves. Moreover, besides the direct impact the countermeasures had on the campaign, equally important was how they affected the attitudes of the larger left-wing community and the public in general. In this context, both the attitudes towards the terrorist campaign and the authorities were relevant to the outcome of the campaigns.
Resumo:
By detecting leading protons produced in the Central Exclusive Diffractive process, p+p → p+X+p, one can measure the missing mass, and scan for possible new particle states such as the Higgs boson. This process augments - in a model independent way - the standard methods for new particle searches at the Large Hadron Collider (LHC) and will allow detailed analyses of the produced central system, such as the spin-parity properties of the Higgs boson. The exclusive central diffractive process makes possible precision studies of gluons at the LHC and complements the physics scenarios foreseen at the next e+e− linear collider. This thesis first presents the conclusions of the first systematic analysis of the expected precision measurement of the leading proton momentum and the accuracy of the reconstructed missing mass. In this initial analysis, the scattered protons are tracked along the LHC beam line and the uncertainties expected in beam transport and detection of the scattered leading protons are accounted for. The main focus of the thesis is in developing the necessary radiation hard precision detector technology for coping with the extremely demanding experimental environment of the LHC. This will be achieved by using a 3D silicon detector design, which in addition to the radiation hardness of up to 5×10^15 neutrons/cm2, offers properties such as a high signal-to- noise ratio, fast signal response to radiation and sensitivity close to the very edge of the detector. This work reports on the development of a novel semi-3D detector design that simplifies the 3D fabrication process, but conserves the necessary properties of the 3D detector design required in the LHC and in other imaging applications.
Resumo:
Several excited states of Ds and Bs mesons have been discovered in the last six years: BaBar, Cleo and Belle discovered the very narrow states D(s0)*(2317)+- and D(s1)(2460)+- in 2003, and CDF and DO Collaborations reported the observation of two narrow Bs resonances, B(s1)(5830)0 and B*(s2)(5840)0 in 2007. To keep up with experiment, meson excited states should be studied from the theoretical aspect as well. The theory that describes the interaction between quarks and gluons is quantum chromodynamics (QCD). In this thesis the properties of the meson states are studied using the discretized version of the theory - lattice QCD. This allows us to perform QCD calculations from first principles, and "measure" not just energies but also the radial distributions of the states on the lattice. This gives valuable theoretical information on the excited states, as we can extract the energy spectrum of a static-light meson up to D wave states (states with orbital angular momentum L=2). We are thus able to predict where some of the excited meson states should lie. We also pay special attention to the order of the states, to detect possible inverted spin multiplets in the meson spectrum, as predicted by H. Schnitzer in 1978. This inversion is connected to the confining potential of the strong interaction. The lattice simulations can also help us understand the strong interaction better, as the lattice data can be treated as "experimental" data and used in testing potential models. In this thesis an attempt is made to explain the energies and radial distributions in terms of a potential model based on a one-body Dirac equation. The aim is to get more information about the nature of the confining potential, as well as to test how well the one-gluon exchange potential explains the short range part of the interaction.
Resumo:
Oleate-capped ZnO:MgO nanocrystals have been synthesized that are soluble in nonpolar solvents and which emit strongly in the visible region (450−600 nm) on excitation by UV radiation. The visible emission involves recombination of trap states of the nanocrystalline ZnO core and has a higher quantum yield than the band gap UV exciton emission. The spectrally resolved dynamics of the trap states have been investigated by time-resolved emission spectroscopy. The time-evolution of the photoluminescence spectra show that there are, in fact, two features in the visible emission whose relative importance and efficiencies vary with time. These features originate from recombination involving trapped electrons and holes, respectively, and with efficiencies that depend on the occupancy of the trap density of states.
Resumo:
The physico-chemical, photo-physical and micro-structural properties responsible for the strikingly different photocatalytic behavior of combustion-prepared TiO2 (c.TiO2) and Degussa P25 (d.TiO2) samples are elucidated in this study. Electron microscopy and selected area electron diffraction micrographs revealed that the two samples exhibited different morphologies. The grains of c.TiO2 were spherical and comprised of 5-6 nm size primary particle. On the other hand, d.TiO2 consisted of large (0.5-3.0 mu m) size and irregular shape aggregates having primary particles of 15-40 nm cross-sectional diameter. The ESR study revealed that the presence of certain defect states in c.TiO2 helped in stabilization of O-. and Ti3+-OH type species during room-temperature UV-irradiation. No such paramagnetic species were however formed over d.TiO2 under similar conditions. C1s and Ti 2p XPS spectra provide evidence for the presence of some lattice vacancies in c.TiO2 and also for the bulk Ti4+ -> Ti3+ conversion during its UV-irradiation. Compared to d.TiO2, c.TiO2 displayed considerably higher activity for discoloration of methyl orange but very poor activity for splitting of water, both under UV and visible light radiations. This is attributed to enhanced surface adsorption of dye molecules over c.TiO2, because of its textural features and also the presence of photo-active ion-radicals. On the other hand, the poor activity of c.TiO2 for water splitting is related to certain defect-induced inter-band charge trapping states in the close vicinity of valence and conduction bands of c.TiO2, as revealed by thermoluminescence spectroscopy. Further, the dispersion of nanosize gold particles gave rise to augmented activity of both the catalysts, particularly for water splitting. This is explained by the promotional role of Au-0 or Au-0/TiO2 interfacial sites in the adsorption and charge-adsorbate interaction processes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We introduce the inverse annihilation and creation operators a-1 and a(dagger-1) by their actions on the number states. We show that the squeezed vacuum exp(1/2xia(dagger2)]\0] and squeezed first number state exp[1.2xia(dagger2)]\n = 1] are respectively the eigenstates of the operators (a(dagger-1)a) and (aa(dagger-1)) with the eigenvalue xi.
Resumo:
Displaced squeezed states are proposed as variational ground states for phonons (Bose fields) coupled to two-level systems (spin systems). We have investigated the zero-temperature phase diagram for the localization-delocalization transition of a tunneling particle interacting with an Ohmic heat bath. Our results are compared with known existing approximate treatments. A modified phase diagram using the displaced squeezed state is presented.
Resumo:
Nonclassicality in the sense of quantum optics is a prerequisite for entanglement in multimode radiation states. In this work we bring out the possibilities of passing from the former to the latter, via action of classicality preserving systems like beam splitters, in a transparent manner. For single-mode states, a complete description of nonclassicality is available via the classical theory of moments, as a set of necessary and sufficient conditions on the photon number distribution. We show that when the mode is coupled to an ancilla in any coherent state, and the system is then acted upon by a beam splitter, these conditions turn exactly into signatures of negativity under partial transpose (NPT) entanglement of the output state. Since the classical moment problem does not generalize to two or more modes, we turn in these cases to other familiar sufficient but not necessary conditions for nonclassicality, namely the Mandel parameter criterion and its extensions. We generalize the Mandel matrix from one-mode states to the two-mode situation, leading to a natural classification of states with varying levels of nonclassicality. For two-mode states we present a single test that can, if successful, simultaneously show nonclassicality as well as NPT entanglement. We also develop a test for NPT entanglement after beam-splitter action on a nonclassical state, tracing carefully the way in which it goes beyond the Mandel nonclassicality test. The result of three-mode beam-splitter action after coupling to an ancilla in the ground state is treated in the same spirit. The concept of genuine tripartite entanglement, and scalar measures of nonclassicality at the Mandel level for two-mode systems, are discussed. Numerous examples illustrating all these concepts are presented.