964 resultados para artificial neural network (ANN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Electronic Nose is being jointly developed between the University of Greenwich and the Institute of Intelligent Machines to detect the gases given off from an oil filled transformer when it begins to break down. The gas sensors being used are very simple, consisting of a layer of Tin Oxide (SnO2) which is heated to approximately 640 K and the conductivity varies with the gas concentrations. Some of the shortcomings introduced by the commercial gas sensors available are being overcome by the use of an integrated array of gas sensors and the use of artificial neural networks which can be 'taught' to recognize when the gas contains several components. At present simulated results have achieved up to a 94% success rate of recognizing two component gases and future work will investigate alternative neural network configurations to maintain this success rate with practical measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial neural network (ANN) models for water loss (WL) and solid gain (SG) were evaluated as potential alternative to multiple linear regression (MLR) for osmotic dehydration of apple, banana and potato. The radial basis function (RBF) network with a Gaussian function was used in this study. The RBF employed the orthogonal least square learning method. When predictions of experimental data from MLR and ANN were compared, an agreement was found for ANN models than MLR models for SG than WL. The regression coefficient for determination (R2) for SG in MLR models was 0.31, and for ANN was 0.91. The R2 in MLR for WL was 0.89, whereas ANN was 0.84.Osmotic dehydration experiments found that the amount of WL and SG occurred in the following descending order: Golden Delicious apple > Cox apple > potato > banana. The effect of temperature and concentration of osmotic solution on WL and SG of the plant materials followed a descending order as: 55 > 40 > 32.2C and 70 > 60 > 50 > 40%, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic taxonomic categorisation of 23 species of dinoflagellates was demonstrated using field-collected specimens. These dinoflagellates have been responsible for the majority of toxic and noxious phytoplankton blooms which have occurred in the coastal waters of the European Union in recent years and make severe impact on the aquaculture industry. The performance by human 'expert' ecologists/taxonomists in identifying these species was compared to that achieved by 2 artificial neural network classifiers (multilayer perceptron and radial basis function networks) and 2 other statistical techniques, k-Nearest Neighbour and Quadratic Discriminant Analysis. The neural network classifiers outperform the classical statistical techniques. Over extended trials, the human experts averaged 85% while the radial basis network achieved a best performance of 83%, the multilayer perceptron 66%, k-Nearest Neighbour 60%, and the Quadratic Discriminant Analysis 56%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of artificial neural network (ANN) models to predict the rheological behavior of grouts is described is this paper and the sensitivity of such parameters to the variation in mixture ingredients is also evaluated. The input parameters of the neural network were the mixture ingredients influencing the rheological behavior of grouts, namely the cement content, fly ash, ground-granulated blast-furnace slag, limestone powder, silica fume, water-binder ratio (w/b), high-range water-reducing admixture, and viscosity-modifying agent (welan gum). The six outputs of the ANN models were the mini-slump, the apparent viscosity at low shear, and the yield stress and plastic viscosity values of the Bingham and modified Bingham models, respectively. The model is based on a multi-layer feed-forward neural network. The details of the proposed ANN with its architecture, training, and validation are presented in this paper. A database of 186 mixtures from eight different studies was developed to train and test the ANN model. The effectiveness of the trained ANN model is evaluated by comparing its responses with the experimental data that were used in the training process. The results show that the ANN model can accurately predict the mini-slump, the apparent viscosity at low shear, the yield stress, and the plastic viscosity values of the Bingham and modified Bingham models of the pseudo-plastic grouts used in the training process. The results can also predict these properties of new mixtures within the practical range of the input variables used in the training with an absolute error of 2%, 0.5%, 8%, 4%, 2%, and 1.6%, respectively. The sensitivity of the ANN model showed that the trend data obtained by the models were in good agreement with the actual experimental results, demonstrating the effect of mixture ingredients on fluidity and the rheological parameters with both the Bingham and modified Bingham models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper demonstrates the suitability of artificial neural network (ANN) for modelling of a FinFET in nano-circuit simulation. The FinFET used in this work is designed using careful engineering of source-drain extension, which simultaneously improves maximum frequency of oscillation f(max) because of lower gate to drain capacitance, and intrinsic gain A(V0) = g(m)/g(ds), due to lower output conductance g(ds). The framework for the ANN-based FinFET model is a common source equivalent circuit, where the dependence of intrinsic capacitances, resistances and dc drain current I-d on drain-source V-ds and gate-source V-gs is derived by a simple two-layered neural network architecture. All extrinsic components of the FinFET model are treated as bias independent. The model was implemented in a circuit simulator and verified by its ability to generate accurate response to excitations not used during training. The model was used to design a low-noise amplifier. At low power (J(ds) similar to 10 mu A/mu m) improvement was observed in both third-order-intercept IIP3 (similar to 10 dBm) and intrinsic gain A(V0) (similar to 20 dB), compared to a comparable bulk MOSFET with similar effective channel length. This is attributed to higher ratio of first-order to third-order derivative of I-d with respect to gate voltage and lower g(ds), in FinFET compared to bulk MOSFET. Copyright (C) 2009 John Wiley & Sons, Ltd.