Artificial analysis of molecular marker loci linked to tree resistance response by an artificial neural network


Autoria(s): Fernández, Jorge; Castellanos Peñuela, Angel Luis; Castellanos Peñuela, Juan Bautista
Data(s)

2015

Resumo

One of the biggest challenges that software developers face is to make an accurate estimate of the project effort. Radial basis function neural networks have been used to software effort estimation in this work using NASA dataset. This paper evaluates and compares radial basis function versus a regression model. The results show that radial basis function neural network have obtained less Mean Square Error than the regression method.

Formato

application/pdf

Identificador

http://oa.upm.es/38187/

Idioma(s)

spa

Publicador

E.U.I.T. Forestal (UPM)

Relação

http://oa.upm.es/38187/1/INVE_MEM_2015_208352.pdf

http://www.foibg.com/ijicp/ijicp-finfo.htm

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Fonte

International Journal Information Content and Processing, ISSN 2367-5152, 2015, Vol. 2, No. 1

Palavras-Chave #Matemáticas
Tipo

info:eu-repo/semantics/article

Artículo

PeerReviewed