979 resultados para Zygomatic bone


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoarthritis (OA) is the most common musculoskeletal disorder and represents a major health burden to society. In the course of the pathological development of OA, articular cartilage chondrocytes (ACCs) undergo atypical phenotype changes characterized by the expression of hypertrophic differentiation markers. Also, the adjacent subchondral bone shows signs of abnormal mineral density and enhanced production of bone turnover markers, indicative of osteoblast dysfunction. Collectively these findings indicate that the pathological changes typical of OA, involve alterations of the phenotypic properties of cells in both the subchondral bone and articular cartilage. However, the mechanism(s) by which these changes occur during OA development are not completely understood. The purpose of this project was to address the question of how subchondral bone osteoblasts (SBOs) and ACCs interact with each other with respect to regulation of respective cells’ phenotypic properties and in particular the involvement of mitogen activated protein kinase (MAPK) signalling pathways under normal and OA joint condition. We also endeavoured to test the influence of cross-talk between SBOs and ACCs isolated from normal and OA joint on matrix metalloproteinase (MMP) expression. For this purpose tissues from the knees of OA patients and normal controls were collected to isolate SBOs and ACCs. The cellular cross-talk of SBOs and ACCs were studied by means of both direct and indirect co-culture systems, which made it possible to identify the role of both membrane bound and soluble factors. Histology, immunohistochemistry, qRT-PCR, zymography, ELISA and western blotting were some of the techniques applied to distinguish the changes in the co-cultured vs. non co-cultured cells. The MAPK signalling pathways were probed by using targeted MAPK inhibitors, and their activity monitored by western blot analysis using phospho MAPK specific antibodies. Our co-culture studies demonstrated that OA ACCs enhanced the SBOs differentiation compared to normal ACCs. We demonstrated that OA ACCs induced these phenotypic changes in the SBOs via activating an ERK1/2 signalling pathway. The findings from this study thus provided clear evidence that OA ACCs play an integral role in altering the SBO phenotype. In the second study, we tested the influence of normal SBOs and OA SBOs on ACCs phenotype changes. The results showed that OA SBOs increased the hypertrophic gene expression in co-cultured ACCs compared to normal SBOs, a phenotype which is considered as pathological to the health and integrity of articular cartilage. It was demonstrated that these phenotype changes occurred via de-activation of p38 and activation of ERK1/2 signaling pathways. These findings suggest that the pathological interaction of OA SBOs with ACCs is mediated by cross-talking between ERK1/2 and p38 pathways, resulting in ACCs undergoing hypertrophic differentiation. Subsequent experiments to determine the effect on MMP regulation, of SBOs and ACCs cross-talk, revealed that co-culturing OA SBOs with ACCs significantly enhanced the proteolytic activity and expression of MMP-2 and MMP-9. In turn, co-culture of OA ACCs with SBOs led to abundant MMP-2 expression in SBOs. Furthermore, we showed that the addition of ERK1/2 and JNK inhibitors reversed the elevated MMP-2 and MMP-9 production which otherwise resulted from the interactions of OA SBOs-ACCs. Thus, this study has demonstrated that the altered interactions between OA SBOs-ACCs are capable of triggering the pathological pathways leading to degenerative changes seen in the osteoarthritic joint. In conclusion, the body of work presented in this dissertation has given clear in vitro evidence that the altered bi-directional communication of SBOs and ACCs may play a role in OA development and that this process was mediated by MAPK signalling pathways. Targeting these altered interactions by the use of MAPK inhibitors may provide the scientific rationale for the development of novel therapeutic strategies in the treatment and management of OA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, research has focused on bone marrow derived multipotent mesenchymal precursor cells (MPC) for their potential clinical use in bone engineering. Prior to clinical application, MPC-based treatment concepts need to be evaluated in preclinical, immunocompetent, large animal models. Sheep in particular are considered a valid model for orthopaedic and trauma related research. However, ovine MPC and their osteogenic potential remain poorly characterized. In the present study, ex vivo expanded MPC isolated from ovine bone marrow proliferated at a higher rate than osteoblasts (OB) derived from tibial compact bone as assessed using standard 2D culture. MPC expressed the respective phenotypic profile typical for different mesenchymal cell populations (CD14-/CD31-/CD45- /CD29+/CD44+/CD166+) and showed a multilineage differentiation potential. When compared to OB, MPC had a higher mineralization potential under standard osteogenic culture conditions and expressed typical markers such as osteocalcin, osteonectin and type I collagen at the mRNA and protein level. After 4 weeks in 3D culture, MPC constructs demonstrated higher cell density and mineralization, whilst cell viability on the scaffolds was assessed >90%. Cells displayed a spindle-like morphology and formed an interconnected network. Implanted subcutaneously into NOD/SCID mice on type I collagen coated polycaprolactone-tricalciumphosphate (mPCL-TCP) scaffolds, MPC presented a higher developmental potential than osteoblasts. In summary, this study provides a detailed in vitro characterisation of ovine MPC from a bone engineering perspective and suggests that MPC provide promising means for future bone disease related treatment applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Bone loss associated with trauma, osteo-degenerative diseases and tumors has tremendous socioeconomic impact related to personal and occupation disability and health care costs. In the present climate of increasing life expectancy with an ensuing increase in bone-related injuries, orthopaedic surgery is undergoing a paradigm shift from bone-grafting to bone engineering, where a scaffold is implanted to provide adequate load bearing and enhance tissue regeneration. We aim to develop composite scaffolds for bone tissue engineering applications to replace the current gold standard of autografting. ---------- Methods: Medical grade polycaprolactone-tricalcium phosphate (mPCL/TCP) scaffolds (80/20 wt%) were custom made using fused deposition modelling to produce 1x1.5x2 cm sized implants for critical-sized pig cranial implantations, empty defects were used as a control. Autologous bone marrow stromal cells (BMSCs) were extracted and precultured for 2 weeks, dispersed within fibrin glue and injected during scaffold implantation. After 2 years, microcomputed tomography and histology were used to assess bone regenerative capabilities of cell versus cell-free scaffolds. ---------- Results: Extensive bone regeneration was evident throughout the entire scaffold. Clear osteocytes embedded within mineralised matrix and active osteoblasts present around scaffold struts were observed. Cell groups performed better than cell-free scaffolds. ---------- Conclusions: Bone regeneration within defects which cannot heal unassisted can be achieved using mPCL/TCP scaffolds. This is improved by the inclusion of autogenous BMSCs. Further work will include the inclusion of growth factors including BMP-2, VEGF and PDGF to provide multifunctional scaffolds, where the three-dimensional (3D) template itself acts as a biomimetic, programmable and multi-drug delivery device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone loss associated with trauma osteo-degenerative diseases and tumors has tremendous socioeconomic impact related to personal and occupation disability and health care costs. Bone grafting is often critical to surgical therapies. Autogenous bone is presently the preferred grafting material; however, this holds several disadvantages such as donor site morbidity. In the present climate of increasing life expectancy with an ensuing increase in bone-related injuries, orthopaedic surgery is undergoing a paradigm shift from bone-grafting to bone engineering, where a scaffold is implanted to provide adequate load bearing and enhance tissue regeneration. Our group at Queensland University of Technology (QUT) have developed, characterised and tested polycaprolactone/ tricalcium phosphate (PCL/TCP) composite scaffolds for low load-bearing bone defects. These scaffolds are being further developed for application in higher load bearing sites. Our approach emphasizes the importance of the biomaterials’ structural design, the scaffold architecture and structural and nutritional requirements for cell culture. These first-generation scaffolds made from medical grade PCL (mPCL) have been studied for more than 5 years within a clinical setting 1. This paper describes the application of second-generation scaffolds in small and large animal bone defect models and the ensuing bone regeneration as shown by histology and µCT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human mesenchymal stem cells (hMSCs) possess great therapeutic potential for the treatment of bone disease and fracture non-union. Too often however, in vitro evidence alone of the interaction between hMSCs and the biomaterial of choice is used as justification for continued development of the material into the clinic. Clearly for hMSC-based regenerative medicine to be successful for the treatment of orthopaedic trauma, it is crucial to transplant hMSCs with a suitable carrier that facilitates their survival, optimal proliferation and osteogenic differentiation in vitro and in vivo. This motivated us to evaluate the use of polycaprolactone-20% tricalcium phosphate (PCL-TCP) scaffolds produced by fused deposition modeling for the delivery of hMSCs. When hMSCs were cultured on the PCL-TCP scaffolds and imaged by a combination of phase contrast, scanning electron and confocal laser microscopy, we observed five distinct stages of colonization over a 21-day period that were characterized by cell attachment, spreading, cellular bridging, the formation of a dense cellular mass and the accumulation of a mineralized extracellular matrix when induced with osteogenic stimulants. Having established that PCL-TCP scaffolds are able to support hMSC proliferation and osteogenic differentiation, we next tested the in vivo efficacy of hMSC-loaded PCL-TCP scaffolds in nude rat critical-sized femoral defects. We found that fluorescently labeled hMSCs survived in the defect site for up to 3 weeks post-transplantation. However, only 50% of the femoral defects treated with hMSCs responded favorably as determined by new bone volume. As such, we show that verification of hMSC viability and differentiation in vitro is not sufficient to predict the efficacy of transplanted stem cells to consistently promote bone formation in orthotopic defects in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reviewing the available literature, one could conclude that marrow-derived mesenchymal stem cells (BMSCs) are the ‘gold standard’ source for bone tissue engineering applications, due to their multilineage differentiation potential and easy accessibility. However, comprehensive studies comparing their osteogenic potential with bone-derived osteoblasts (OBs) to justify the preferred application of BMSCs based on performance are few. To address these shortfalls, in the present study, ovine BMSCs and OBs seeded onto scaffolds were characterized in vitro and transplanted subcutaneously into NOD/SCID mice in combination with and without recombinant human bone morphogenetic protein 7 (rhBMP-7). It was hypothesized that cell origin, ossification type and degree of vascularization and ossification depends on the nature and commitment of transplanted cells and stimulating growth factors, such as rhBMP-7. After retrieval, specimens were analysed by biomechanical testing, µCT analysis, scanning electron microscopy/energy-dispersive X-ray spectroscopy and histo- and immunohistochemistry for osteocalcin, type II collagen and BrdU. The results showed a high degree of cell survival and proliferation ectopically, resulting in active contribution to endochondral osteogenesis. When compared to BMSCs, OBs showed a higher degree of bone deposition while OB-derived bone was of higher maturation. Stimulation with rhBMP-7 increased the rate of bone synthesis for both BMSCs and OBs, additionally promoting neovascularization and osteoclast activity. These results suggest that the origin and commitment of transplanted cells highly influence the type and degree of ossification, that rhBMP-7 represents a powerful adjuvant for bone tissue-engineering applications, and that mature bone is an adequate alternative cell source for bone tissue-engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone is a complex, living, constantly changing tissue. Bone consists of cancellous and cortical bone. This architecture allows the skeleton to perform its essential mechanical functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell based therapies for bone regeneration are an exciting emerging technology, but the availability of osteogenic cells is limited and an ideal cell source has not been identified. Amniotic fluid-derived stem (AFS) cells and bone-marrow derived mesenchymal stem cells (MSCs) were compared to determine their osteogenic differentiation capacity in both 2D and 3D environments. In 2D culture, the AFS cells produced more mineralized matrix but delayed peaks in osteogenic markers. Cells were also cultured on 3D scaffolds constructed of poly-e-caprolactone for 15 weeks. MSCs differentiated more quickly than AFS cells on 3D scaffolds, but mineralized matrix production slowed considerably after 5 weeks. In contrast, the rate of AFS cell mineralization continued to increase out to 15 weeks, at which time AFS constructs contained 5-fold more mineralized matrix than MSC constructs. Therefore, cell source should be taken into consideration when used for cell therapy, as the MSCs would be a good choice for immediate matrix production, but the AFS cells would continue robust mineralization for an extended period of time. This study demonstrates that stem cell source can dramatically influence the magnitude and rate of osteogenic differentiation in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium Phosphate ceramic has been widely used in bone tissue engineering due to its excellent biocompatibility and biodegradability. However, low mechanical properties and biodegradability limit their potential applications. In this project, hydroxyapatite (HA) and calcium phosphate bioglass were used to produce porous tri-calcium phosphate (TCP) bio-ceramic scaffolds. It was found that porous TCP bioceramic could be obtained when 20wt percent bioglass addition and sintered in 1400 degrees celsius for 3 h. Significantly higher compressive strength (9.98 MPa) was achieved in the scaffolds as compared to those produced from tCP power (<3 MPa). The biocompatibility of the scaffold was also estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous yttria-stabilized zirconia (YSZ) has been regarded as a potential candidate for bone substitute due to its high mechanical strength. However, porous YSZ is biologically inert to bone tissue. It is therefore necessary to introduce bioactive coatings onto the walls of the porous structures to enhance its bioactivity. In this study, porous YSZ scaffolds were prepared using a replication technique and then coated with mesoporous bioglass due to its excellent bioactivity. The microstructures were examined using scanning electron microscopy and the mechanical strength was evaluated via compression test. The biocompatibility and bioactivity were also evaluated using bone marrow stromal cell (BMSC) proliferation test and simulated body fluid test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past 20 years, mesoporous materials have been attracted great attention due to their significant feature of large surface area, ordered mesoporous structure, tunable pore size and volume, and well-defined surface property. They have many potential applications, such as catalysis, adsorption/separation, biomedicine, etc. [1]. Recently, the studies of the applications of mesoporous materials have been expanded into the field of biomaterials science. A new class of bioactive glass, referred to as mesoporous bioactive glass (MBG), was first developed in 2004. This material has a highly ordered mesopore channel structure with a pore size ranging from 5–20 nm [1]. Compared to non-mesopore bioactive glass (BG), MBG possesses a more optimal surface area, pore volume and improved in vitro apatite mineralization in simulated body fluids [1,2]. Vallet-Regí et al. has systematically investigated the in vitro apatite formation of different types of mesoporous materials, and they demonstrated that an apatite-like layer can be formed on the surfaces of Mobil Composition of Matters (MCM)-48, hexagonal mesoporous silica (SBA-15), phosphorous-doped MCM-41, bioglass-containing MCM-41 and ordered mesoporous MBG, allowing their use in biomedical engineering for tissue regeneration [2-4]. Chang et al. has found that MBG particles can be used for a bioactive drug-delivery system [5,6]. Our study has shown that MBG powders, when incorporated into a poly (lactide-co-glycolide) (PLGA) film, significantly enhance the apatite-mineralization ability and cell response of PLGA films. compared to BG [7]. These studies suggest that MBG is a very promising bioactive material with respect to bone regeneration. It is known that for bone defect repair, tissue engineering represents an optional method by creating three-dimensional (3D) porous scaffolds which will have more advantages than powders or granules as 3D scaffolds will provide an interconnected macroporous network to allow cell migration, nutrient delivery, bone ingrowth, and eventually vascularization [8]. For this reason, we try to apply MBG for bone tissue engineering by developing MBG scaffolds. However, one of the main disadvantages of MBG scaffolds is their low mechanical strength and high brittleness; the other issue is that they have very quick degradation, which leads to an unstable surface for bone cell growth limiting their applications. Silk fibroin, as a new family of native biomaterials, has been widely studied for bone and cartilage repair applications in the form of pure silk or its composite scaffolds [9-14]. Compared to traditional synthetic polymer materials, such as PLGA and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the chief advantage of silk fibroin is its water-soluble nature, which eliminates the need for organic solvents, that tend to be highly cytotoxic in the process of scaffold preparation [15]. Other advantages of silk scaffolds are their excellent mechanical properties, controllable biodegradability and cytocompatibility [15-17]. However, for the purposes of bone tissue engineering, the osteoconductivity of pure silk scaffolds is suboptimal. It is expected that combining MBG with silk to produce MBG/silk composite scaffolds would greatly improve their physiochemical and osteogenic properties for bone tissue engineering application. Therefore, in this chapter, we will introduce the research development of MBG/silk scaffolds for bone tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The periosteum plays an indispensable role in both bone formation and bone defect healing. The aim of this project is to produce tissue engineered periosteum for bone defect treatment. Methods: In this study we constructed an artificial in vitro periosteum by incorporating osteogenic differentiated bone marrow stromal cells (BMSCs) and cobalt chloride (CoCl2)-treated BMSCs. The engineered periostea were implanted both subcutaneously and into skull bone defects in SCID mice to investigate ectopic and orthotopic osteogenesis and vascularisation. After two weeks in subcutaneous and four weeks in bone defect areas, the implanted constructs were assessed for ectopic and orthotopic osteogenesis and vascularisation by micro-CT, histomorphometrical and immunohistochemical methods. Results: The results showed that CoCl2 pre-treated BMSCs induced higher degree of vascularisation and enhanced osteogenesis within the implants in both ectopic and orthotopic areas. Conclusion: This study provided a novel approach using BMSCs sourced from the same patient for both osteogenic and pro-angiogenic purposes in constructing tissue engineered periosteum to enhance vascularized osteogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Regeneration of osseous defects by tissue-engineering or cell delivery approach provides a novel means of treatment utilizing cell biology, materials sciences, and molecular biology. The concept of in vitro explanted mesenchymal stem cells (MSCs) with an ability to induce new bone formation has been demonstrated in some small animal models. However, contradictory results have been reported regarding the regenerative capacity of MSCs after ex vivo expansion due to the lack of the understanding of microenvironment for MSC differentiation in vivo. ----- ----- Methods: In our laboratory tissue-derived and bone marrow-derived MSCs have been investigated in their osteogenesis. Cell morphology and proliferation were studied by microscopy, confocal microscopy, FACS and cell counting. Cell differentiation and matrix formation were analysed by matrix staining, quantitative PCR, and immunohistochemistry. A SCID skull defect model was used for cell transplantation studies.----- ----- Results: It was noted that tissue-derived and bone marrow-derived MSCs showed similar characteristics in cell surface marker expression, mesenchymal lineage differentiation potential, and cell population doubling. MSCs from both sources could initiate new bone formation in bone defects after delivery into a critical size defects. The bone forming cells were from both transplanted cells and endogenous cells from the host. Interestingly, the majority of in vitro osteogenic differentiated cells did not form new bone directly even though mineralized matrix was synthesized in vitro by MSCs. Furthermore, no new bone formation was detected when MSCs were transplanted subcutaneously.----- ----- Conclusion: This study unveiled the limitations of MSC delivery in bone regeneration and proposed that in vivo microenvironment needs to be optimized for MSC delivery in osteogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

and non-union of bony fractures has been proposed since 1966, little has been known about the effect of HBOT on bone marrow stem cells (BMSC). The aim of this study is to investigate the effect of HBO treatment on osteogenetic differentiation of BMSC and potential application in bone tissue engineering. Adhesive stromal cells harvested from bone marrow were characterized by mesenchymal differentiation potential, cell surface markers and their proliferation capacity. Mesenchymal stem cells, which demonstrated osteogenic, chondrogenic and adipogenic differentiation potential and expressed positively for CD 29, CD 44, CD 73, CD 90, CD 105, CD 166 and negatively for CD34 and CD 45, were selected and treated in a laboratory-scale HBO chamber using different oxygen pressures and exposure times. No obvious effect of HBO treatment on BMSC proliferation was noticed. However, cytotoxic effects of HBO were considerably less pronounced when cells were cultured in medium supplemented with 10% FBS in comparison to medium supplemented with 2% FCS, as was evaluated by WST-1 assay. Under HBO treatment, bone nodules were formed in three days, which was clearly revealed by Von Kossa staining. In contrasts, without HBO treatment, bone nodules were not detected until 9-12 days using the same inducing culture media. Calcium deposition was also significantly increased after three days of HBO treatments compared to no HBO treatment. In addition it was also found that oxygen played a direct role in the enhancement of BMSC osteogenic differentiation, which was independent of the effect of air pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this sheep study, we investigated the influence of fixation stability on the temporal and spatial distribution of tissues in the fracture callus. As the initial mechanical conditions have been cited as being especially important for the healing outcome, it was hypothesized that differences in the path of healing would be seen as early as the initial phase of healing. ----- ----- Sixty-four sheep underwent a mid-shaft tibial osteotomy that was treated with either a rigid or a semi-rigid external fixator. Animals were sacrificed at 2, 3, 6 and 9 weeks postoperatively and the fracture calluses were analyzed using radiological, biomechanical and histological techniques. Statistical comparison between the groups was performed using the Mann–Whitney U test for unpaired non-parametric data. ----- ----- In the callus of the tibia treated with semi-rigid fixation, remnants of the fracture haematoma remained present for longer, although new periosteal bone formation during early healing was similar in both groups. The mechanical competence of the healing callus at 6 weeks was inferior compared to tibiae treated with rigid fixation. Semi-rigid fixation resulted in a larger cartilage component of the callus, which persisted longer. Remodeling processes were initiated earlier in the rigid group, while new bone formation continued throughout the entire investigated period in the semi-rigid group. ----- ----- In this study, evidence is provided that less rigid fixation increased the time required for healing. The process of intramembranous ossification appeared during the initial stages of healing to be independent of mechanical stability. However, the delay in healing was related to a prolonged chondral phase.