960 resultados para Z Refinement
Resumo:
We report a measurement of the ratio of the top-antitop to Z/gamma* production cross sections in sqrt(s) = 1.96 TeV proton-antiproton collisions using data corresponding to an integrated luminosity of up to 4.6 fb-1, collected by the CDF II detector. The top-antitop cross section ratio is measured using two complementary methods, a b-jet tagging measurement and a topological approach. By multiplying the ratios by the well-known theoretical Z/gamma*->ll cross section, the extracted top-antitop cross sections are effectively insensitive to the uncertainty on luminosity. A best linear unbiased estimate is used to combine both measurements with the result sigma_(top-antitop) = 7.70 +/- 0.52 pb, for a top-quark mass of 172.5 GeV/c^2.
Resumo:
We present a search for the standard model Higgs boson produced with a Z boson in 4.1 fb^-1 of data collected with the CDF II detector at the Tevatron. In events consistent with the decay of the Higgs boson to a bottom-quark pair and the Z boson to electrons or muons, we set 95% credibility level upper limits on the ZH production cross section times the H -> b bbar branching ratio. Improved analysis methods enhance signal sensitivity by 20% relative to previous searches beyond the gain due to the larger data sample. At a Higgs boson mass of 115 GeV/c^2 we set a limit of 5.9 times the standard model value.
Resumo:
We present a search for exclusive Z boson production in proton-antiproton collisions at sqrt(s) = 1.96 TeV, using the CDF II detector at Fermilab. We observe no exclusive Z->ll candidates and place the first upper limit on the exclusive Z cross section in hadron collisions, sigma(exclu) gammagamma->p+ll+pbar, and measure the cross section for M(ll) > 40 GeV/c2 and |eta(l)|
New Solid State Forms of the Anti-HIV Drug Efavirenz. Conformational Flexibility and High Z ` Issues
Resumo:
Structural information on the solid forms of efavirenz, a non-nucleoside reverse transcriptase inhibitor, is limited, although various polymorphic forms of this drug have been patented. We report here structural studies of four new crystal forms a pure form, a cyclohexane solvate, and cocrystals with 1,4-cyclohexanedione and 4,4'-bipyridine. Temperature dependent single-crystal to single-crystal phase transitions are observed for the pure form and for the cyclohexane solvate with an increase in the number of symmetry independent molecules, Z', upon a lowering of temperature. Other issues related to these solid forms, such as thermal stability, conformational flexibility, and high Z' occurrences, are addressed by using a combined experimental and computational approach.
Resumo:
In the title Mannich base, C20H21N3O3, an isatin derivative of thymol the O-CH2-C(=O)-N(H)-N fragment connecting the aromatic and fused-ring systems is approximately planar, with the N-N single bond in a Zmconfiguration. The amino H atom of this N-N fragment is intramolecularly hydrogen bonded to the carbonyl O atom of the indolinone fused ring as well as to the phenoxy O atom of the aromat ring. The amino H atom of the indoline fused ring forms a hydrogen bond with the double-bond O atom of an adjacent molecule, this hydrogen bond giving rise to a linear chain motif.
Resumo:
Interaction of the DNA binding nonintercalators Netropsin, Distamycin and the mPD derivative with Z-DNA has been studied. It has been found that environmental factors like the solvent and added cations significantly modulate the interaction of these ligands with Z-DNA. However no definite Z to B transition in presence of these ligands was found in any case, in contrast to previously reported results (Ch. Zimmer, C. Marck and W. Guschlbauer, FEBS Lett. 154, 156-160 (1983)).
Resumo:
The standard Gibbs energies of formation of RuO2 and OsO2 at high temperature have been determined with high precision, using a novel apparatus that incorporates a buffer electrode between the reference and working electrodes, The buffer electrode absorbs the electrochemical flux of oxygen through the solid electrolyte from the electrode with higher oxygen chemical potential to the electrode with lower oxygen potential, The buffer electrode prevents polarization of the measuring electrode and ensures accurate data, The standard Gibbs energies of formation (Delta(f)G degrees) of RuO2, in the temperature range of 900-1500 K, and OsO2, in the range of 900-1200 K, can be represented by the equations Delta(f)G degrees(RuO2)(J/mol) = -324 720 + 354.21T - 23.490T In T Delta(f)G degrees(OsO2)(J/mol) = -304 740 + 318.80T - 18.444T In T where the temperature T is given in Kelvin and the deviation of the measurement is +/- 80 J/mol, The high-temperature heat ;capacities of RuO2 and OsO2 are measured using differential scanning calorimetry. The information for both the low- and high-temperature heat rapacity of RuO2 is coupled with the Delta(f)G degrees data obtained in this study to evaluate the standard enthalpy of formation of RuO2 at 298.15 K (Delta(f)H degrees(298.15K)). The low-temperature heat capacity of OsO2 has not been measured: therefore, the standard enthalpy and entropy of formation of OsO2 at 298.15 K (Delta(f)H degrees(298.15K) and S degrees(298.15K), respectively) are derived simultaneously through an optimization procedure from the high-temperature heat capacity and the Gibbs energy of formation. Both Delta fH degrees(298.15K) and S degrees(298.15K) are treated as variables in the optimization routine, For RuO2, the standard enthalpy of formation at 298.15 K is Delta fH degrees(298.15K) (RuO2) -313.52 +/- 0.08 kJ/mol, and that for OsO2 is Delta(f)H degrees(298.15K) (OSO2) = -295.96 +/- 0.08 kJ/mol. The standard entropy of OsO2 at 298.15 K that has been obtained from the optimization is given as S degrees(298.15K) (OsO2) = 49.8 +/- 0.2 J (mol K)(-1).
Resumo:
Two tripeptides of the type Boc-Pro-ΔZX-Gly-NHEt (where X = Leu, Phe) have been synthesized and their solution conformations investigated by 270 MHz 1H n.m.r. and i.r. spectroscopy. These conformational studies indicated that ΔZLeu, similar to ΔZPhe, has a strong tendency to stabilize folded Type II β-turn conformations when present at i + 2 position.
Resumo:
The conformation of an acyclic dehydrophenylalanine (delta Z-Phe) containing hexapeptide, Boc-Phe-delta Z-Phe-Val-Phe-delta Z-Phe-Val-OMe, has been investigated in CDCl3 and (CD3)2SO by 270-MHz 1H-nmr. Studies of NH group solvent accessibility and observation of interresidue nuclear Overhauser effects (NOEs) suggest a significant solvent-dependent conformational variability. In CDCl3, a population of folded helical conformations is supported by the inaccessibility to solvent of the NH groups of residues 3-6 and the detection of several NiH----Ni + 1H NOEs. Evidence is also obtained for conformational heterogeneity from the detection of some Ci alpha H----Ni + 1H NOEs characteristic of extended strands. In (CD3)2SO, the peptide largely favors an extended conformation, characterized by five solvent-exposed NH groups and successive Ci alpha H----Ni + 1H NOEs for the L-residues and Ci beta H----Ni + 1H NOEs for the delta Z-Phe residues. The results suggest that delta Z-Phe residues do not provide compelling conformational constraints.
Resumo:
The special magnetotransport properties of hole doped manganese perovskites originate from a complex interplay among structural, magnetic and electronic degree of freedom. In this picture the local atomic structure around Mn ions plays a special role and this is the reason why short range order techniques like X-ray absorption spectroscopy (XAS) have been deeply exploited for studying these compounds. The analysis of near edge region features (XANES) of XAS spectra can provide very fine details of the local structure around Mn, complementary to the EXAFS, so contributing to the full understanding of the peculiar physical properties of these materials. Nevertheless the XANES analysis is complicated by the large amount of structural and electronic details involved making difficult the quantitative interpretation.This work exploits the recently developed MXAN code to achieve a full structural refinement of the Mn K edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3, in which the Mn ions are present only in one charge state as Mn3+ and Mn4+ respectively. The good agreement between the results derived from the analysis of near edge and extended region of the XAS spectra demonstrates that a quantitative picture of the local structure call be obtained from structural refinement of Mn K edge XANES data in these crystalline compounds. The XANES analysis offers, in addition.. the possibility to directly achieve information on the topology of local atomic structure around the absorber not directly achievable from EXAFS.
Resumo:
A posteriori error estimation and adaptive refinement technique for fracture analysis of 2-D/3-D crack problems is the state-of-the-art. The objective of the present paper is to propose a new a posteriori error estimator based on strain energy release rate (SERR) or stress intensity factor (SIF) at the crack tip region and to use this along with the stress based error estimator available in the literature for the region away from the crack tip. The proposed a posteriori error estimator is called the K-S error estimator. Further, an adaptive mesh refinement (h-) strategy which can be used with K-S error estimator has been proposed for fracture analysis of 2-D crack problems. The performance of the proposed a posteriori error estimator and the h-adaptive refinement strategy have been demonstrated by employing the 4-noded, 8-noded and 9-noded plane stress finite elements. The proposed error estimator together with the h-adaptive refinement strategy will facilitate automation of fracture analysis process to provide reliable solutions.
Resumo:
The crystal structure of a hexamer duplex d(CACGTG)(2) has been determined and refined to an R-factor of 18.3% using X-ray data up to 1.2 angstrom resolution. The sequence crystallizes as a left-handed Z-form double helix with Watson-Crick base pairing. There is one hexamer duplex, a spermine molecule, 71 water molecules, and an unexpected diamine (Z-5, 1,3-propanediamine, C3H10N2)) in the asymmetric unit. This is the high-resolution non-disordered structure of a Z-DNA hexamer containing two AT base pairs in the interior of a duplex with no modifications such as bromination or methylation on cytosine bases. This structure does not possess multivalent cations such as cobalt hexaammine that are known to stabilize Z-DNA. The overall duplex structure and its crystal interactions are similar to those of the pure-spermine form of the d(CGCGCG)(2) structure. The spine of hydration in the minor groove is intact except in the vicinity of the T5A8 base pair. The binding of the Z-5 molecule in the minor grove of the d(CACGTG)(2) duplex appears to have a profound effect in conferring stability to a Z-DNA conformation via electrostatic complementarity and hydrogen bonding interactions. The successive base stacking geometry in d(CACGTG)(2) is similar to the corresponding steps in d(CG)(3). These results suggest that specific polyamines such as Z-5 could serve as powerful inducers of Z-type conformation in unmodified DNA sequences with AT base pairs. This structure provides a molecular basis for stabilizing AT base pairs incorporated into an alternating d(CG) sequence.
Resumo:
Isoselenocyanates derived from Boc/Z-amino acids are prepared by the reaction of the corresponding isonitriles with selenium powder in presence of triethylamine at reflux. The utility of these new classes of isoselenocyanates in the preparation of selenoureidodipeptidomimetics possessing both amino as well as carboxy termini has been accomplished. The H-1 NMR analysis confirmed that the protocol involving the conversion of isonitriles to isoselenocyanates and their use as coupling agents in assembling selenour-eido derivatives is free from racemization. (C) 2010 Elsevier Ltd. All rights reserved.