965 resultados para Y ALLOYS
Resumo:
L’objet de la présente étude est le développement, l’application et la diffusion de la technologie associée à divers types d’alliages de cuivre, en particulier l’alliage du plomb-bronze, en Grèce ancienne, dans ses colonies, ainsi qu’en Étrurie. Le plomb-bronze est un mélange de diverses proportions d’étain, de cuivre et de plomb. Le consensus général chez les archéométallurgistes est que le plomb-bronze n’était pas communément utilisé en Grèce avant la période hellénistique; par conséquent, cet alliage a reçu très peu d’attention dans les documents d’archéologie. Cependant, les analyses métallographiques ont prouvé que les objets composés de plomb ajouté au bronze ont connu une distribution étendue. Ces analyses ont aussi permis de différencier la composition des alliages utilisés dans la fabrication de divers types de bronzes, une preuve tangible que les métallurgistes faisaient la distinction entre les propriétés du bronze d’étain et celles du plomb-bronze. La connaissance de leurs différentes caractéristiques de travail permettait aux travailleurs du bronze de choisir, dans bien des cas, l’alliage approprié pour une utilisation particulière. L’influence des pratiques métallurgiques du Proche-Orient a produit des variations tant dans les formes artistiques que dans les compositions des alliages de bronze grecs durant les périodes géométrique tardive et orientalisante. L’utilisation du plomb-bronze dans des types particuliers d’objets coulés montre une tendance à la hausse à partir de la période orientalisante, culminant dans la période hellénistique tardive, lorsque le bronze à teneur élevée en plomb est devenu un alliage commun. La présente étude analyse les données métallographiques de la catégorie des objets coulés en bronze et en plomb-bronze. Elle démontre que, bien que l’utilisation du plomb-bronze n’était pas aussi commune que celle du bronze d’étain, il s’agissait néanmoins d’un mélange important d’anciennes pratiques métallurgiques. Les ères couvertes sont comprises entre les périodes géométrique et hellénistique.
Resumo:
By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO(2)-Y(2)O(3) solid solutions, the presence at room temperature of three different phases depending on Y(2)O(3) content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO(2)-Y(2)O(3) solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro)crystals. The compositional boundaries between both tetragonal forms and between tetragonal and cubic phases were also determined. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We present theoretical photoluminescence (PL) spectra of undoped and p-doped Al(x)In(1-xy)Ga(y)N/Al(X)In(1) (X) (Y)Ga(Y)N double quantum wells (DQWs). The calculations were performed within the k.p method by means of solving a full eight-band Kane Hamiltonian together with the Poisson equation in a plane wave representation, including exchange-correlation effects within the local density approximation. Strain effects due to the lattice mismatch are also taken into account. We show the calculated PL spectra, analyzing the blue and red-shifts in energy as one varies the spike and the well widths, as well as the acceptor doping concentration. We found a transition between a regime of isolated quantum wells and that of interacting DQWs. Since there are few studies of optical properties of quantum wells based on nitride quaternary alloys, the results reported here will provide guidelines for the interpretation of forthcoming experiments. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In recent years, Mg-Ni-based metastable alloys have been attracting attention due to their large hydrogen sorption capacities, low weight, low cost, and high availability. Despite the large discharge capacity and high activity of these alloys, the accelerated degradation of the discharge capacity after only few cycles of charge and discharge is the main shortcoming against their commercial use in batteries. The addition of alloying elements showed to be an effective way of improving the electrode performance of Mg-Ni-based alloys. In the present work, the effect of Ti and Pt alloying elements on the structure and electrode performance of a binary Mg-Ni alloy was investigated. The XRD and HRTEM revealed that all the investigated alloy compositions had multi-phase nanostructures, with crystallite size in the range of 6 nm. Moreover, the investigated alloying elements demonstrated remarkable improvements of both maximum discharge capacity and cycling life. Simultaneous addition of Ti and Pd demonstrated a synergetic effect on the electrochemical properties of the alloy electrodes. Among the investigated alloys, the best electrochemical performance was obtained for the Mg(51)Ti(4)Ni(43)Pt(2) composition (in at.%), which achieved 448 mAh g(-1) of maximum discharge capacity and retained almost 66% of this capacity after 10 cycles. In contrast, the binary Mg(55)Ni(45) alloy achieved only 248 mAh g(-1) and retained 11% of this capacity after 10 cycles. (C) 2010 Elsevier By. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of the study presented in this article was to analyze the influence of remelting of two odontological alloys: Dentorium and Steeldent, on the mechanical properties and on the chemical composition. For the two alloys, samples, containing 10% and 50% new alloy, were subjected to tensile test, micrography and chemical analysis. The alloys presented similar mechanical properties, except for the elongation, which presented higher values for the Dentorium 50% new alloy. This is due to the smaller carbides formed in this sample. The remelting itself seems not to be responsible for these differences, but they are probably due to the lack of a good control of the casting process. The micrography showed a dendritic column matrix, with carbides in the interdentric region and inside dendritic grain. In the chemical composition was observed few elements percentage change.
Resumo:
Objective: To investigate the influence of the convergence angle of tooth preparation on the fracture load of Y-TZP-based ceramic (YZ-Vita YZ) substructure (SB) veneered with a feldspathic porcelain (VM9-Vita VM9). Methods: Finite element stress analysis (FEA) was performed to examine the stress distribution of the system. Eighty YZ SB were fabricated using a CAD-CAM system and divided into four groups (n = 20), according to the total occlusal convergence (TOC) angle: G6-6° TOC; G12-12° TOC; G20-20° TOC; and G20MOD-20° TOC with modified SB. All SB were veneered with VM9, cemented in a fiber reinforced epoxy resin die, and loaded to failure. Half of the specimens from each group (n = 10) were cyclic fatigued (106 cycles) before testing. Failure analysis was performed to determine the fracture origin. Data were statistically analyzed using Anova and Tukey's tests (α = 0.05). Results: The greatest mean load to fracture value was found for the G20MOD, which was predicted by the FEA. Cyclic fatigue did not significantly affect the load of fracture. Catastrophic failure originating from the internal occlusal surface of the SB was the predominant failure mode, except for G20MOD. Significance: The YZ-VM9 restorations resisted greater compression load than the usual physiological occlusal load, regardless of the TOC angle of preparations. Yet, the G20MOD design produced the best performance among the experimental conditions evaluated. © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The influence of current density, at the interval 5-100 mA cm-2, on the structural and magnetic properties of electrodeposited (Co 100-xNix)100-yWy alloys (x = 23-33.5 at. % Ni, y = 1.7-7.3 at. % W) was studied from a glycine-containing bath. W-content decreases with the increase of the current density magnitude. X-ray data have shown stabilization of hexagonal close packed, face centered cubic or a mixture of these structures by modulating the applied cathodic current density, for values lower than 50 mA cm-2. Two structural phase transitions were observed: one from hexagonal close packed to face centered cubic structural transition occurring for a current density of 20 mA cm -2, and another one, from cubic crystalline phase to amorphous state, which happens for values higher than 50 mA cm-2. These structural phase transitions seem to be associated with the W-content as well as average crystalline grain sizes that reduce with increasing the current density value. The grain size effect may explain the face centered cubic stabilization in Co-rich CoNiW alloys, which was initially assumed to be basically due to H-adsorption/incorporation. Magnetic properties of Co-rich CoNiW alloys are strongly modified by the current density value; as a result of the changes on the W-content and their structural properties© 2013 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Based on our needs, that is to say, through precise simulation of the impact phenomena that may occur inside a jet engine turbine with an explicit non-linear finite element code, four new material models are postulated. Each one of is calibrated for four high-performance alloys that can be encountered in a modern jet engine. A new uncoupled material model for high strain and ballistic is proposed. Based on a Johnson-Cook type model, the proposed formulation introduces the effect of the third deviatoric invariant by means of three different Lode angle dependent functions. The Lode dependent functions are added to both plasticity and failure models. The postulated model is calibrated for a 6061-T651 aluminium alloy with data taken from the literature. The fracture pattern predictability of the JCX material model is shown performing numerical simulations of various quasi-static and dynamic tests. As an extension of the above-mentioned model, a modification in the thermal softening behaviour due to phase transformation temperatures is developed (JCXt). Additionally, a Lode angle dependent flow stress is defined. Analysing the phase diagram and high temperature tests performed, phase transformation temperatures of the FV535 stainless steel are determined. The postulated material model constants for the FV535 stainless steel are calibrated. A coupled elastoplastic-damage material model for high strain and ballistic applications is presented (JCXd). A Lode angle dependent function is added to the equivalent plastic strain to failure definition of the Johnson-Cook failure criterion. The weakening in the elastic law and in the Johnson-Cook type constitutive relation implicitly introduces the Lode angle dependency in the elastoplastic behaviour. The material model is calibrated for precipitation hardened Inconel 718 nickel-base superalloy. The combination of a Lode angle dependent failure criterion with weakened constitutive equations is proven to predict fracture patterns of the mechanical tests performed and provide reliable results. A transversely isotropic material model for directionally solidified alloys is presented. The proposed yield function is based a single linear transformation of the stress tensor. The linear operator weighs the degree of anisotropy of the yield function. The elastic behaviour, as well as the hardening, are considered isotropic. To model the hardening, a Johnson-Cook type relation is adopted. A material vector is included in the model implementation. The failure is modelled with the Cockroft-Latham failure criterion. The material vector allows orienting the reference orientation in any other that the user may need. The model is calibrated for the MAR-M 247 directionally solidified nickel-base superalloy.
Resumo:
Esta investigación presenta un modelo de material para aleaciones de solidificación direccional que poseen un comportamiento mecánico transversalmente isótropo. Se han realizado una serie de ensayos de tracción sobre probetas cilíndricas a varias velocidades de deformación y a varias temperaturas sobre la superaleación de base níquel de solidificación direccional MAR-M 247 con objeto de conocer su comportamiento mecánico. Los ensayos se realizaron sobre probetas cilíndricas cuya dirección longitudinal forma 0º y 90º con la de la orientación de crecimiento de los granos. Para representar el comportamiento plástico anisótropo se ha formulado una función de plastificación de forma no cuadrática basada en la transformación lineal de tensores. Con el propósito de simplificar en todo lo posible el modelo se ha considerado un endurecimiento isótropo. Para probar la validez del modelo propuesto se ha implementado el mismo como modelo de material definido por el usuario en el código no lineal de elementos finitos LS-DYNA. In this research a material model for directionally solidified alloys with transversely isotropic mechanic behavior is presented. In order to characterize the mechanical behavior of the Mar-M 247 directionally solidified nickel based superalloy, tensile tests of axisymmetric smooth specimens were performed at various strain rates and temperatures. The specimens were machined making sure that the longitudinal axis of them was forming 0º and 90º with the grain growth orientation. To represent the plastic flow, a non-quadratic anisotropic function based on linear transformation of tensors has been formulated. For the sake of simplicity isotropic strain hardening of the material has been considered. To prove the validity of the model, a material subroutine has been implemented in LS-DYNA non-linear finite element code as a user defined material model.
Resumo:
The mechanical behavior of three tungsten (W) alloys with vanadium (V) and lanthana (La2O3) additions (W–4%V, W–1%La2O3, W–4%V–1%La2O3) processed by hot isostatic pressing (HIP) have been compared with pure-W to analyze the influence of the dopants. Mechanical characterization was performed by three point bending (TPB) tests in an oxidizing air atmosphere and temperature range between 77 (immersion tests in liquid nitrogen) and 1273 K, through which the fracture toughness, flexural strength, and yield strength as function of temperature were obtained. Results show that the V and La2O3 additions improve the mechanical properties and oxidation behavior, respectively. Furthermore, a synergistic effect of both dopants results in an extraordinary increase of the flexure strength, fracture toughness and resistance to oxidation compared to pure-W, especially at higher temperatures. In addition, a new experimental method was developed to obtain a very small notch tip radius (around 5–7 μm) and much more similar to a crack through the use of a new machined notch. The fracture toughness results were lower than those obtained with traditional machining of the notch, which can be explained with electron microscopy, observations of deformation in the rear part of the notch tip. Finally, scanning electron microscopy (SEM) examination of the microstructure and fracture surfaces was used to determine and analyze the relationship between the macroscopic mechanical properties and the micromechanisms of failure involved, depending on the temperature and the dispersion of the alloy.
Resumo:
One of the challenges of science and engineering nowadays is to develop new ways to supply energy in a sustainable and ecological mode. The fussion energy could be the final answer but a myriad of problems must be solved previously.