898 resultados para XML, Information, Retrieval, Query, Language


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum-inspired models have recently attracted increasing attention in Information Retrieval. An intriguing characteristic of the mathematical framework of quantum theory is the presence of complex numbers. However, it is unclear what such numbers could or would actually represent or mean in Information Retrieval. The goal of this paper is to discuss the role of complex numbers within the context of Information Retrieval. First, we introduce how complex numbers are used in quantum probability theory. Then, we examine van Rijsbergen’s proposal of evoking complex valued representations of informations objects. We empirically show that such a representation is unlikely to be effective in practice (confuting its usefulness in Information Retrieval). We then explore alternative proposals which may be more successful at realising the power of complex numbers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex numbers are a fundamental aspect of the mathematical formalism of quantum physics. Quantum-like models developed outside physics often overlooked the role of complex numbers. Specifically, previous models in Information Retrieval (IR) ignored complex numbers. We argue that to advance the use of quantum models of IR, one has to lift the constraint of real-valued representations of the information space, and package more information within the representation by means of complex numbers. As a first attempt, we propose a complex-valued representation for IR, which explicitly uses complex valued Hilbert spaces, and thus where terms, documents and queries are represented as complex-valued vectors. The proposal consists of integrating distributional semantics evidence within the real component of a term vector; whereas, ontological information is encoded in the imaginary component. Our proposal has the merit of lifting the role of complex numbers from a computational byproduct of the model to the very mathematical texture that unifies different levels of semantic information. An empirical instantiation of our proposal is tested in the TREC Medical Record task of retrieving cohorts for clinical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of task 3 of the ShARe/CLEF eHealth Evaluation Lab 2013. This evaluation lab focuses on improving access to medical information on the web. The task objective was to investigate the effect of using additional information such as the discharge summaries and external resources such as medical ontologies on the IR effectiveness. The participants were allowed to submit up to seven runs, one mandatory run using no additional information or external resources, and three each using or not using discharge summaries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of information retrieval (IR), researchers and practitioners are often faced with a demand for valid approaches to evaluate the performance of retrieval systems. The Cranfield experiment paradigm has been dominant for the in-vitro evaluation of IR systems. Alternative to this paradigm, laboratory-based user studies have been widely used to evaluate interactive information retrieval (IIR) systems, and at the same time investigate users’ information searching behaviours. Major drawbacks of laboratory-based user studies for evaluating IIR systems include the high monetary and temporal costs involved in setting up and running those experiments, the lack of heterogeneity amongst the user population and the limited scale of the experiments, which usually involve a relatively restricted set of users. In this paper, we propose an alternative experimental methodology to laboratory-based user studies. Our novel experimental methodology uses a crowdsourcing platform as a means of engaging study participants. Through crowdsourcing, our experimental methodology can capture user interactions and searching behaviours at a lower cost, with more data, and within a shorter period than traditional laboratory-based user studies, and therefore can be used to assess the performances of IIR systems. In this article, we show the characteristic differences of our approach with respect to traditional IIR experimental and evaluation procedures. We also perform a use case study comparing crowdsourcing-based evaluation with laboratory-based evaluation of IIR systems, which can serve as a tutorial for setting up crowdsourcing-based IIR evaluations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relevation! is a system for performing relevance judgements for information retrieval evaluation. Relevation! is web-based, fully configurable and expandable; it allows researchers to effectively collect assessments and additional qualitative data. The system is easily deployed allowing assessors to smoothly perform their relevance judging tasks, even remotely. Relevation! is available as an open source project at: http://ielab.github.io/relevation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the Probability Ranking Principle for Information Retrieval provides the basis for formal models, it makes a very strong assumption regarding the dependence between documents. However, it has been observed that in real situations this assumption does not always hold. In this paper we propose a reformulation of the Probability Ranking Principle based on quantum theory. Quantum probability theory naturally includes interference effects between events. We posit that this interference captures the dependency between the judgement of document relevance. The outcome is a more sophisticated principle, the Quantum Probability Ranking Principle, that provides a more sensitive ranking which caters for interference/dependence between documents’ relevance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents new methods for classification and thematic grouping of billions of web pages, at scales previously not achievable. This process is also known as document clustering, where similar documents are automatically associated with clusters that represent various distinct topic. These automatically discovered topics are in turn used to improve search engine performance by only searching the topics that are deemed relevant to particular user queries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many techniques in information retrieval produce counts from a sample, and it is common to analyse these counts as proportions of the whole - term frequencies are a familiar example. Proportions carry only relative information and are not free to vary independently of one another: for the proportion of one term to increase, one or more others must decrease. These constraints are hallmarks of compositional data. While there has long been discussion in other fields of how such data should be analysed, to our knowledge, Compositional Data Analysis (CoDA) has not been considered in IR. In this work we explore compositional data in IR through the lens of distance measures, and demonstrate that common measures, naïve to compositions, have some undesirable properties which can be avoided with composition-aware measures. As a practical example, these measures are shown to improve clustering. Copyright 2014 ACM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis targets on a challenging issue that is to enhance users' experience over massive and overloaded web information. The novel pattern-based topic model proposed in this thesis can generate high-quality multi-topic user interest models technically by incorporating statistical topic modelling and pattern mining. We have successfully applied the pattern-based topic model to both fields of information filtering and information retrieval. The success of the proposed model in finding the most relevant information to users mainly comes from its precisely semantic representations to represent documents and also accurate classification of the topics at both document level and collection level.