959 resultados para Walters’ liquid B
Resumo:
Biopolymer-based materials have been of particular interest and they are alternatives to synthetic polymers based on the decreasing oil resources. The polymer electrolytes were doped with choline-based IL N,N,Ntrimethyl- N-(2-hydroxyethyl)ammonium bis(trifluoromethylsulfonyl)imide ([N1 1 1 2(OH)][NTf2]), or Er (CF3SO3)3 or both. The polymer electrolytes were employed in the production of glass/ITO/WO3/electrolyte/ CeO2–TiO2/ITO/glass electrochromic devices (ECDs). The lowest onset temperature for the degradation of all the SPEs is at ~130 °C for the Gellan Er (CF3SO3)3 (10:1) this temperature range of stability is wide enough for a material to be applied as an electrolyte/separator component in electrochemical devices. The three ECDs displayed fast switching speed (ca. 15 s). Gellan [N1 1 1 2(OH)][NTf2] Er (CF3SO3)3 (5:1:10) exhibited an electrochromic contrast of 4.2% in the visible region, the coloration efficiency attained at 555 nm was 3.5 and 0.90 cm-2 C-1 in the “colored” and “bleached” states, respectively, and the open circuit memorywas 48 h. Preliminary tests performed with a prototype electrochromic device (ECD) incorporating WO3 as cathodic electrochromic layer, are extremely encouraging.
Resumo:
Colistin is a last resort's antibacterial treatment in critically ill patients with multi-drug resistant Gram-negative infections. As appropriate colistin exposure is the key for maximizing efficacy while minimizing toxicity, individualized dosing optimization guided by therapeutic drug monitoring is a top clinical priority. Objective of the present work was to develop a rapid and robust HPLC-MS/MS assay for quantification of colistin plasma concentrations. This novel methodology validated according to international standards simultaneously quantifies the microbiologically active compounds colistin A and B, plus the pro-drug colistin methanesulfonate (colistimethate, CMS). 96-well micro-Elution SPE on Oasis Hydrophilic-Lipophilic-Balanced (HLB) followed by direct analysis by Hydrophilic Interaction Liquid Chromatography (HILIC) with Ethylene Bridged Hybrid - BEH - Amide phase column coupled to tandem mass spectrometry allows a high-throughput with no significant matrix effect. The technique is highly sensitive (limit of quantification 0.014 and 0.006μg/mL for colistin A and B), precise (intra-/inter-assay CV 0.6-8.4%) and accurate (intra-/inter-assay deviation from nominal concentrations -4.4 to +6.3%) over the clinically relevant analytical range 0.05-20μg/mL. Colistin A and B in plasma and whole blood samples are reliably quantified over 48h at room temperature and at +4°C (<6% deviation from nominal values) and after three freeze-thaw cycles. Colistimethate acidic hydrolysis (1M H2SO4) to colistin A and B in plasma was completed in vitro after 15min of sonication while the pro-drug hydrolyzed spontaneously in plasma ex vivo after 4h at room temperature: this information is of utmost importance for interpretation of analytical results. Quantification is precise and accurate when using serum, citrated or EDTA plasma as biological matrix, while use of heparin plasma is not appropriate. This new analytical technique providing optimized quantification in real-life conditions of the microbiologically active compounds colistin A and B offers a highly efficient tool for routine therapeutic drug monitoring aimed at individualizing drug dosing against life-threatening infections.
Resumo:
Therapeutic drug monitoring (TDM) may contribute to optimizing the efficacy and safety of antifungal therapy because of the large variability in drug pharmacokinetics. Rapid, sensitive, and selective laboratory methods are needed for efficient TDM. Quantification of several antifungals in a single analytical run may best fulfill these requirements. We therefore developed a multiplex ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method requiring 100 μl of plasma for simultaneous quantification within 7 min of fluconazole, itraconazole, hydroxyitraconazole, posaconazole, voriconazole, voriconazole-N-oxide, caspofungin, and anidulafungin. Protein precipitation with acetonitrile was used in a single extraction procedure for eight analytes. After reverse-phase chromatographic separation, antifungals were quantified by electrospray ionization-triple-quadrupole mass spectrometry by selected reaction monitoring detection using the positive mode. Deuterated isotopic compounds of azole antifungals were used as internal standards. The method was validated based on FDA recommendations, including assessment of extraction yields, matrix effect variability (<9.2%), and analytical recovery (80.1 to 107%). The method is sensitive (lower limits of azole quantification, 0.01 to 0.1 μg/ml; those of echinocandin quantification, 0.06 to 0.1 μg/ml), accurate (intra- and interassay biases of -9.9 to +5% and -4.0 to +8.8%, respectively), and precise (intra- and interassay coefficients of variation of 1.2 to 11.1% and 1.2 to 8.9%, respectively) over clinical concentration ranges (upper limits of quantification, 5 to 50 μg/ml). Thus, we developed a simple, rapid, and robust multiplex UPLC-MS/MS assay for simultaneous quantification of plasma concentrations of six antifungals and two metabolites. This offers, by optimized and cost-effective lab resource utilization, an efficient tool for daily routine TDM aimed at maximizing the real-time efficacy and safety of different recommended single-drug antifungal regimens and combination salvage therapies, as well as a tool for clinical research.
Resumo:
The response of Arabidopsis to stress caused by mechanical wounding was chosen as a model to compare the performances of high resolution quadrupole-time-of-flight (Q-TOF) and single stage Orbitrap (Exactive Plus) mass spectrometers in untargeted metabolomics. Both instruments were coupled to ultra-high pressure liquid chromatography (UHPLC) systems set under identical conditions. The experiment was divided in two steps: the first analyses involved sixteen unwounded plants, half of which were spiked with pure standards that are not present in Arabidopsis. The second analyses compared the metabolomes of mechanically wounded plants to unwounded plants. Data from both systems were extracted using the same feature detection software and submitted to unsupervised and supervised multivariate analysis methods. Both mass spectrometers were compared in terms of number and identity of detected features, capacity to discriminate between samples, repeatability and sensitivity. Although analytical variability was lower for the UHPLC-Q-TOF, generally the results for the two detectors were quite similar, both of them proving to be highly efficient at detecting even subtle differences between plant groups. Overall, sensitivity was found to be comparable, although the Exactive Plus Orbitrap provided slightly lower detection limits for specific compounds. Finally, to evaluate the potential of the two mass spectrometers for the identification of unknown markers, mass and spectral accuracies were calculated on selected identified compounds. While both instruments showed excellent mass accuracy (<2.5ppm for all measured compounds), better spectral accuracy was recorded on the Q-TOF. Taken together, our results demonstrate that comparable performances can be obtained at acquisition frequencies compatible with UHPLC on Q-TOF and Exactive Plus MS, which may thus be equivalently used for plant metabolomics.
Resumo:
Studies in cystic fibrosis patients and mice overexpressing the epithelial Na(+) channel beta-subunit (betaENaC-Tg) suggest that raised airway Na(+) transport and airway surface liquid (ASL) depletion are central to the pathogenesis of cystic fibrosis lung disease. However, patients or mice with Liddle gain-of-function betaENaC mutations exhibit hypertension but no lung disease. To investigate this apparent paradox, we compared the airway phenotype (nasal versus tracheal) of Liddle with CFTR-null, betaENaC-Tg, and double mutant mice. In mouse nasal epithelium, the region that functionally mimics human airways, high levels of CFTR expression inhibited Liddle epithelial Nat channel (ENaC) hyperfunction. Conversely, in mouse trachea, low levels of CFTR failed to suppress Liddle ENaC hyperfunction. Indeed, Na(+) transport measured in Ussing chambers ("flooded" conditions) was raised in both Liddle and betaENaC-Tg mice. Because enhanced Na(+) transport did not correlate with lung disease in these mutant mice, measurements in tracheal cultures under physiologic "thin film" conditions and in vivo were performed. Regulation of ASL volume and ENaC-mediated Na(+) absorption were intact in Liddle but defective in betaENaC-Tg mice. We conclude that the capacity to regulate Na(+) transport and ASL volume, not absolute Na(+) transport rates in Ussing chambers, is the key physiologic function protecting airways from dehydration-induced lung disease.
Resumo:
RATIONALE: The aim of the work was to develop and validate a method for the quantification of vitamin D metabolites in serum using ultra-high-pressure liquid chromatography coupled to mass spectrometry (LC/MS), and to validate a high-resolution mass spectrometry (LC/HRMS) approach against a tandem mass spectrometry (LC/MS/MS) approach using a large clinical sample set. METHODS: A fast, accurate and reliable method for the quantification of the vitamin D metabolites, 25-hydroxyvitamin D2 (25OH-D2) and 25-hydroxyvitamin D3 (25OH-D3), in human serum was developed and validated. The C3 epimer of 25OH-D3 (3-epi-25OH-D3) was also separated from 25OH-D3. The samples were rapidly prepared via a protein precipitation step followed by solid-phase extraction (SPE) using an HLB μelution plate. Quantification was performed using both LC/MS/MS and LC/HRMS systems. RESULTS: Recovery, matrix effect, inter- and intra-day reproducibility were assessed. Lower limits of quantification (LLOQs) were determined for both 25OH-D2 and 25OH-D3 for the LC/MS/MS approach (6.2 and 3.4 µg/L, respectively) and the LC/HRMS approach (2.1 and 1.7 µg/L, respectively). A Passing & Bablok fit was determined between both approaches for 25OH-D3 on 662 clinical samples (1.11 + 1.06x). It was also shown that results can be affected by the inclusion of the isomer 3-epi-25OH-D3. CONCLUSIONS: Quantification of the relevant vitamin D metabolites was successfully developed and validated here. It was shown that LC/HRMS is an accurate, powerful and easy to use approach for quantification within clinical laboratories. Finally, the results here suggest that it is important to separate 3-epi-25OH-D3 from 25OH-D3. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Saffaj et al. recently criticized our method of monitoring carbon dioxide in human postmortem cardiac gas samples using Headspace-Gas Chromatography-Mass Spectrometry. According to the authors, their demonstration, based on the latest SFSTP guidelines (established after 2007 [1,2]) fitted for the validation of drug monitoring bioanalytical methods, has put in evidence potential errors. However, our validation approach was built using SFSTP guidelines established before 2007 [3-6]. We justify the use of these guidelines because of the post-mortem context of the study (and not clinical) and the gaseous state of the sample (and not solid or liquid). Using these guidelines, our validation remains correct.
Resumo:
A generic LC-MS approach for the absolute quantification of undigested peptides in plasma at mid-picomolar levels is described. Nine human peptides namely, brain natriuretic peptide (BNP), substance P (SubP), parathyroid hormone 1-34 (PTH), C-peptide, orexines A and B (Orex-A and -B), oxytocin (Oxy), gonadoliberin-1 (gonadothropin releasing-hormone or luteinizing hormone-releasing hormone, LHRH) and α-melanotropin (α-MSH) were targeted. Plasma samples were extracted via a 2-step procedure: protein precipitation using 1vol of acetonitrile followed by ultrafiltration of supernatants on membranes with a MW cut-off of 30 kDa. By applying a specific LC-MS setup, large volumes of filtrates (e.g., 2×750 μL) were injected and the peptides were trapped on a 1mm i.d.×10 mm length C8 column using a 10× on-line dilution. Then, the peptides were back-flushed and a second on-line dilution (2×) was applied during the transfer step. The refocalized peptides were resolved on a 0.3mm i.d. C18 analytical column. Extraction recovery, matrix effect and limits of detection were evaluated. Our comprehensive protocol demonstrates a simple and efficient sample preparation procedure followed by the analysis of peptides with limits of detection in the mid-picomolar range. This generic approach can be applied for the determination of most therapeutic peptides and possibly for endogenous peptides with latest state-of-the-art instruments.
Resumo:
A selective and sensitive method was developed for the simultaneous quantification of seven typical antipsychotic drugs (cis-chlorprothixene, flupentixol, haloperidol, levomepromazine, pipamperone, promazine and zuclopenthixol) in human plasma. Ultra-high performance liquid chromatography (UHPLC) was used for complete separation of the compounds in less than 4.5min on an Acquity UPLC BEH C18 column (2.1mm×50mm; 1.7μm), with a gradient elution of ammonium formate buffer pH 4.0 and acetonitrile at a flow rate of 400μl/min. Detection was performed on a tandem quadrupole mass spectrometer (MS/MS) equipped with an electrospray ionization interface. A simple protein precipitation procedure with acetonitrile was used for sample preparation. Thanks to the use of stable isotope-labeled internal standards for all analytes, internal standard-normalized matrix effects were in the range of 92-108%. The method was fully validated to cover large concentration ranges of 0.2-90ng/ml for haloperidol, 0.5-90ng/ml for flupentixol, 1-450ng/ml for levomepromazine, promazine and zuclopenthixol and 2-900ng/ml for cis-chlorprothixene and pipamperone. Trueness (89.1-114.8%), repeatability (1.8-9.9%), intermediate precision (1.9-16.3%) and accuracy profiles (<30%) were in accordance with the latest international recommendations. The method was successfully used in our laboratory for routine quantification of more than 500 patient plasma samples for therapeutic drug monitoring. To the best of our knowledge, this is the first UHPLC-MS/MS method for the quantification of the studied drugs with a sample preparation based on protein precipitation.
Resumo:
There is increasing evidence that the clinical efficacy of tamoxifen, the first and most widely used targeted therapy for estrogen-sensitive breast cancer, depends on the formation of the active metabolites 4-hydroxy-tamoxifen and 4-hydroxy-N-desmethyl-tamoxifen (endoxifen). Large inter-individual variability in endoxifen plasma concentrations has been observed and related both to genetic and environmental (i.e. drug-induced) factors altering CYP450s metabolizing enzymes activity. In this context, we have developed an ultra performance liquid chromatography-tandem mass spectrometry method (UPLC-MS/MS) requiring 100 μL of plasma for the quantification of tamoxifen and three of its major metabolites in breast cancer patients. Plasma is purified by a combination of protein precipitation, evaporation at room temperature under nitrogen, and reconstitution in methanol/20 mM ammonium formate 1:1 (v/v), adjusted to pH 2.9 with formic acid. Reverse-phase chromatographic separation of tamoxifen, N-desmethyl-tamoxifen, 4-hydroxy-tamoxifen and 4-hydroxy-N-desmethyl-tamoxifen is performed within 13 min using elution with a gradient of 10 mM ammonium formate and acetonitrile, both containing 0.1% formic acid. Analytes quantification, using matrix-matched calibration samples spiked with their respective deuterated internal standards, is performed by electrospray ionization-triple quadrupole mass spectrometry using selected reaction monitoring detection in the positive mode. The method was validated according to FDA recommendations, including assessment of relative matrix effects variability, as well as tamoxifen and metabolites short-term stability in plasma and whole blood. The method is precise (inter-day CV%: 2.5-7.8%), accurate (-1.4 to +5.8%) and sensitive (lower limits of quantification comprised between 0.4 and 2.0 ng/mL). Application of this method to patients' samples has made possible the identification of two further metabolites, 4'-hydroxy-tamoxifen and 4'-hydroxy-N-desmethyl-tamoxifen, described for the first time in breast cancer patients. This UPLC-MS/MS assay is currently applied for monitoring plasma levels of tamoxifen and its metabolites in breast cancer patients within the frame of a clinical trial aiming to assess the impact of dose increase on tamoxifen and endoxifen exposure.
Resumo:
Introduction: Oseltamivir phosphate (OP), the prodrug of oseltamivir carboxylate (OC; active metabolite), is marketed since 10 years for the treatment of seasonal influenza flu. It has recently received renewed attention because of the threat of avian flu H5N1 in 2006-7 and the 2009-10 A/H1N1 pandemic. However, relatively few studies have been published on OP and OC clinical pharmacokinetics. The disposition of OC and the dosage adaptation of OP in specific populations, such as young children or patients undergoing extrarenal epuration, have also received poor attention. An analytical method was thus developed to assess OP and OC plasma concentrations in patients receiving OP and presenting with comorbidities or requiring intensive care. Methods: A high performance liquid chromatography coupled to tandem mass spectrometry method (HPLC-MS/MS) requiring 100-µL aliquot of plasma for quantification within 6 min of OP and OC was developed. A combination of protein precipitation with acetonitrile, followed by dilution of supernant in suitable buffered solvent was used as an extraction procedure. After reverse phase chromatographic separation, quantification was performed by electro-spray ionization-triple quadrupole mass spectrometry. Deuterated isotopic compounds of OP and OC were used as internal standards. Results: The method is sensitive (lower limit of quantification: 5 ng/mL for OP and OC), accurate (intra-/inter-assay bias for OP and OC: 8.5%/5.5% and 3.7/0.7%, respectively) and precise (intra-/inter-assay CV%: 5.2%/6.5% and 6.3%/9.2%, respectively) over the clinically relevant concentration range (upper limits of quantification 5000 ng/mL). Of importance, OP, as in other previous reports, was found not to be stable ex vivo in plasma on standard anticoagulants (i.e. EDTA, heparin or citrate). This poor stability of OP has been prevented by collecting blood samples on commercial fluoride/oxalate tubes. Conclusions: This new simple, rapid and robust HPLC-MS/MS assay for quantification of OP and OC plasma concentrations offers an efficient tool for concentration monitoring of OC. Its exposure can probably be controlled with sufficient accuracy by thorough dosage adjustment according to patient characteristics (e.g. renal clearance). The usefulness of systematic therapeutic drug monitoring in patients appears therefore questionable. However, pharmacokinetic studies are still needed to extend knowledge to particular subgroups of patients or dosage regimens.
Resumo:
Impairment of lung liquid absorption can lead to severe respiratory symptoms, such as those observed in pulmonary oedema. In the adult lung, liquid absorption is driven by cation transport through two pathways: a well-established amiloride-sensitive Na(+) channel (ENaC) and, more controversially, an amiloride-insensitive channel that may belong to the cyclic nucleotide-gated (CNG) channel family. Here, we show robust CNGA1 (but not CNGA2 or CNGA3) channel expression principally in rat alveolar type I cells; CNGA3 was expressed in ciliated airway epithelial cells. Using a rat in situ lung liquid clearance assay, CNG channel activation with 1 mM 8Br-cGMP resulted in an approximate 1.8-fold stimulation of lung liquid absorption. There was no stimulation by 8Br-cGMP when applied in the presence of either 100 μM L: -cis-diltiazem or 100 nM pseudechetoxin (PsTx), a specific inhibitor of CNGA1 channels. Channel specificity of PsTx and amiloride was confirmed by patch clamp experiments showing that CNGA1 channels in HEK 293 cells were not inhibited by 100 μM amiloride and that recombinant αβγ-ENaC were not inhibited by 100 nM PsTx. Importantly, 8Br-cGMP stimulated lung liquid absorption in situ, even in the presence of 50 μM amiloride. Furthermore, neither L: -cis-diltiazem nor PsTx affected the β(2)-adrenoceptor agonist-stimulated lung liquid absorption, but, as expected, amiloride completely ablated it. Thus, transport through alveolar CNGA1 channels, located in type I cells, underlies the amiloride-insensitive component of lung liquid reabsorption. Furthermore, our in situ data highlight the potential of CNGA1 as a novel therapeutic target for the treatment of diseases characterised by lung liquid overload.
Resumo:
A procedure using a chirobiotic V column is presented which allows separation of the enantiomers of citalopram and its two N-demethylated metabolites, and of the internal standard, alprenolol, in human plasma. Citalopram, demethylcitalopram and didemethylcitalopram, as well as the internal standard, were recovered from plasma by liquid-liquid extraction. The limits of quantification were found to be 5 ng/ml for each enantiomer of citalopram and demethylcitalopram, and 7.5 ng/ml for each enantiomer of didemethylcitalopram. Inter- and intra-day coefficients of variation varied from 2.4% to 8.6% for S- and R-citalopram, from 2.9% to 7.4% for S- and R-demethylcitalopram, and from 5.6% to 12.4% for S- and R- didemethylcitalopram. No interference was observed from endogenous compounds following the extraction of plasma samples from 10 different patients treated with citalopram. This method allows accurate quantification for each enantiomer and is, therefore, well suited for pharmacokinetic and drug interaction investigations. The presented method replaces a previously described highly sensitive and selective high-performance liquid chromatography procedure using an acetylated 3-cyclobond column which, because of manufactural problems, is no longer usable for the separation of the enantiomers of citalopram and its demethylated metabolites.
Resumo:
Liquid-chromatography (LC) high-resolution (HR) mass spectrometry (MS) analysis can record HR full scans, a technique of detection that shows comparable selectivity and sensitivity to ion transitions (SRM) performed with triple-quadrupole (TQ)-MS but that allows de facto determination of "all" ions including drug metabolites. This could be of potential utility in in vivo drug metabolism and pharmacovigilance studies in order to have a more comprehensive insight in drug biotransformation profile differences in patients. This simultaneous quantitative and qualitative (Quan/Qual) approach has been tested with 20 patients chronically treated with tamoxifen (TAM). The absolute quantification of TAM and three metabolites in plasma was realized using HR- and TQ-MS and compared. The same LC-HR-MS analysis allowed the identification and relative quantification of 37 additional TAM metabolites. A number of new metabolites were detected in patients' plasma including metabolites identified as didemethyl-trihydroxy-TAM-glucoside and didemethyl-tetrahydroxy-TAM-glucoside conjugates corresponding to TAM with six and seven biotransformation steps, respectively. Multivariate analysis allowed relevant patterns of metabolites and ratios to be associated with TAM administration and CYP2D6 genotype. Two hydroxylated metabolites, α-OH-TAM and 4'-OH-TAM, were newly identified as putative CYP2D6 substrates. The relative quantification was precise (<20 %), and the semiquantitative estimation suggests that metabolite levels are non-negligible. Metabolites could play an important role in drug toxicity, but their impact on drug-related side effects has been partially neglected due to the tremendous effort needed with previous MS technologies. Using present HR-MS, this situation should evolve with the straightforward determination of drug metabolites, enlarging the possibilities in studying inter- and intra-patients drug metabolism variability and related effects.