947 resultados para Visual motor integration


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to examine the effects of visual and somatosensory information on body sway in individuals with Down syndrome (DS). Nine adults with DS (19-29 years old) and nine control subjects (CS) (19-29 years old) stood in the upright stance in four experimental conditions: no vision and no touch; vision and no touch; no vision and touch; and vision and touch. In the vision condition, participants looked at a target placed in front of them; in the no vision condition, participants wore a black cotton mask. In the touch condition, participants touched a stationary surface with their right index finger; in the no touch condition, participants kept their arms hanging alongside their bodies. A force plate was used to estimate center of pressure excursion for both anterior-posterior and medial-lateral directions. MANOVA revealed that both the individuals with DS and the control subjects used vision and touch to reduce overall body sway, although individuals with DS still oscillated more than did the CS. These results indicate that adults with DS are able to use sensory information to reduce body sway, and they demonstrate that there is no difference in sensory integration between the individuals with DS and the CS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Aging is characterized by a decline in the postural control performance, which is based on a coherent and stable coupling between sensory information and motor action. Therefore, changes in postural control in elderlies can be related to changes in this coupling. In addition, it has been observed that physical activity seems to improve postural control performance in elderlies. These improvements can be due to changes in the coupling between sensory information and motor action related to postural control. Objective: the purpose of this study was to verify the coupling between visual information and body sway in active and sedentary elderlies. Methods: Sixteen sedentary elderlies ( SE), 16 active elderlies ( AE) and 16 young adults ( YA) were asked to stand upright inside a moving room in two experimental conditions: ( 1) discrete movement and ( 2) continuous movement of the room. Results: In the continuous condition, the results showed that the coupling between the movement of the room and body sway was stronger and more stable for SE and AE compared to YA. In the discrete condition, SE showed larger body displacement compared to AE and YA. Conclusions: SE have more difficulty to discriminate and to integrate sensory information than AE and YA indicating that physical activity may improve sensory integration. Copyright (C) 2005 S. Karger AG, Basel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dyslexic children, besides difficulties in mastering literacy, also show poor postural control that might be related to how sensory cues coming from different sensory channels are integrated into proper motor activity. Therefore, the aim of this study was to examine the relationship between sensory information and body sway, with visual and somatosensory information manipulated independent and concurrently, in dyslexic children. Thirty dyslexic and 30 non-dyslexic children were asked to stand as still as possible inside of a moving room either with eyes closed or open and either lightly touching a moveable surface or not for 60 seconds under five experimental conditions: (1) no vision and no touch; (2) moving room; (3) moving bar; (4) moving room and stationary touch; and (5) stationary room and moving bar. Body sway magnitude and the relationship between room/bar movement and body sway were examined. Results showed that dyslexic children swayed more than non-dyslexic children in all sensory condition. Moreover, in those trials with conflicting vision and touch manipulation, dyslexic children swayed less coherent with the stimulus manipulation compared to non-dyslexic children. Finally, dyslexic children showed higher body sway variability and applied higher force while touching the bar compared to non-dyslexic children. Based upon these results, we can suggest that dyslexic children are able to use visual and somatosensory information to control their posture and use the same underlying neural control processes as non-dyslexic children. However, dyslexic children show poorer performance and more variability while relating visual and somatosensory information and motor action even during a task that does not require an active cognitive and motor involvement. Further, in sensory conflict conditions, dyslexic children showed less coherent and more variable body sway. These results suggest that dyslexic children have difficulties in multisensory integration because they may suffer from integrating sensory cues coming from multiple sources. © 2013 Viana et al.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the present study was to determine the effects of motor practice on visual judgments of apertures for wheelchair locomotion and the visual control of wheelchair locomotion in wheelchair users who had no prior experience. Sixteen young adults, divided into motor practice and control groups, visually judged varying apertures as passable or impassable under walking, pre-practice, and post-practice conditions. The motor practice group underwent additional motor practice in 10 blocks of five trials each, moving the wheelchair through different apertures. The relative perceptual boundary was determined based on judgment data and kinematic variables that were calculated from videos of the motor practice trials. The participants overestimated the space needed under the walking condition and underestimated it under the wheelchair conditions, independent of group. The accuracy of judgments improved from the pre-practice to post-practice condition in both groups. During motor practice, the participants adaptively modulated wheelchair locomotion, adjusting it to the apertures available. The present findings from a priori visual judgments of space and the continuous judgments that are necessary for wheelchair approach and passage through apertures appear to support the dissociation between processes of perception and action.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability of integrating into a unified percept sensory inputs deriving from different sensory modalities, but related to the same external event, is called multisensory integration and might represent an efficient mechanism of sensory compensation when a sensory modality is damaged by a cortical lesion. This hypothesis has been discussed in the present dissertation. Experiment 1 explored the role of superior colliculus (SC) in multisensory integration, testing patients with collicular lesions, patients with subcortical lesions not involving the SC and healthy control subjects in a multisensory task. The results revealed that patients with collicular lesions, paralleling the evidence of animal studies, demonstrated a loss of multisensory enhancement, in contrast with control subjects, providing the first lesional evidence in humans of the essential role of SC in mediating audio-visual integration. Experiment 2 investigated the role of cortex in mediating multisensory integrative effects, inducing virtual lesions by inhibitory theta-burst stimulation on temporo-parietal cortex, occipital cortex and posterior parietal cortex, demonstrating that only temporo-parietal cortex was causally involved in modulating the integration of audio-visual stimuli at the same spatial location. Given the involvement of the retino-colliculo-extrastriate pathway in mediating audio-visual integration, the functional sparing of this circuit in hemianopic patients is extremely relevant in the perspective of a multisensory-based approach to the recovery of unisensory defects. Experiment 3 demonstrated the spared functional activity of this circuit in a group of hemianopic patients, revealing the presence of implicit recognition of the fearful content of unseen visual stimuli (i.e. affective blindsight), an ability mediated by the retino-colliculo-extrastriate pathway and its connections with amygdala. Finally, Experiment 4 provided evidence that a systematic audio-visual stimulation is effective in inducing long-lasting clinical improvements in patients with visual field defect and revealed that the activity of the spared retino-colliculo-extrastriate pathway is responsible of the observed clinical amelioration, as suggested by the greater improvement observed in patients with cortical lesions limited to the occipital cortex, compared to patients with lesions extending to other cortical areas, found in tasks high demanding in terms of spatial orienting. Overall, the present results indicated that multisensory integration is mediated by the retino-colliculo-extrastriate pathway and that a systematic audio-visual stimulation, activating this spared neural circuit, is able to affect orientation towards the blind field in hemianopic patients and, therefore, might constitute an effective and innovative approach for the rehabilitation of unisensory visual impairments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Originalsprache (englisch) Visual perception relies on a two-dimensional projection of the viewed scene on the retinas of both eyes. Thus, visual depth has to be reconstructed from a number of different cues that are subsequently integrated to obtain robust depth percepts. Existing models of sensory integration are mainly based on the reliabilities of individual cues and disregard potential cue interactions. In the current study, an extended Bayesian model is proposed that takes into account both cue reliability and consistency. Four experiments were carried out to test this model's predictions. Observers had to judge visual displays of hemi-cylinders with an elliptical cross section, which were constructed to allow for an orthogonal variation of several competing depth cues. In Experiment 1 and 2, observers estimated the cylinder's depth as defined by shading, texture, and motion gradients. The degree of consistency among these cues was systematically varied. It turned out that the extended Bayesian model provided a better fit to the empirical data compared to the traditional model which disregards covariations among cues. To circumvent the potentially problematic assessment of single-cue reliabilities, Experiment 3 used a multiple-observation task, which allowed for estimating perceptual weights from multiple-cue stimuli. Using the same multiple-observation task, the integration of stereoscopic disparity, shading, and texture gradients was examined in Experiment 4. It turned out that less reliable cues were downweighted in the combined percept. Moreover, a specific influence of cue consistency was revealed. Shading and disparity seemed to be processed interactively while other cue combinations could be well described by additive integration rules. These results suggest that cue combination in visual depth perception is highly flexible and depends on single-cue properties as well as on interrelations among cues. The extension of the traditional cue combination model is defended in terms of the necessity for robust perception in ecologically valid environments and the current findings are discussed in the light of emerging computational theories and neuroscientific approaches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The superficial gray layer of the superior colliculus contains a map that represents the visual field, whereas the underlying intermediate gray layer contains a vector map of the saccades that shift the direction of gaze. These two maps are aligned so that a particular region of the visual field is represented directly above the neurons that orient the highest acuity area of the retina toward that region. Although it has been proposed that the transmission of information from the visuosensory to the motor map plays an important role in the generation of visually guided saccades, experiments have failed to demonstrate any functional linkage between the two layers. We examined synaptic transmission between these layers in vitro by stimulating the superficial layer while using whole-cell patch-clamp methods to measure the responses of intermediate layer neurons. Stimulation of superficial layer neurons evoked excitatory postsynaptic currents in premotor cells. This synaptic input was columnar in organization, indicating that the connections between the layers link corresponding regions of the visuosensory and motor maps. Excitatory postsynaptic currents were large enough to evoke action potentials and often occurred in clusters similar in duration to the bursts of action potentials that premotor cells use to command saccades. Our results indicate the presence of functional connections between the superficial and intermediate layers and show that such connections could play a significant role in the generation of visually guided saccades.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Action selection and organization are very complex processes that need to exploit contextual information and the retrieval of previously memorized information, as well as the integration of these different types of data. On the basis of anatomical connection with premotor and parietal areas involved in action goal coding, and on the data about the literature it seems appropriate to suppose that one of the most candidate involved in the selection of neuronal pools for the selection and organization of intentional actions is the prefrontal cortex. We recorded single ventrolateral prefrontal (VLPF) neurons activity while monkeys performed simple and complex manipulative actions aimed at distinct final goals, by employing a modified and more strictly controlled version of the grasp-to-eat(a food pellet)/grasp-to-place(an object) paradigm used in previous studies on parietal (Fogassi et al., 2005) and premotor neurons (Bonini et al., 2010). With this task we have been able both to evaluate the processing and integration of distinct (visual and auditory) contextual sequentially presented information in order to select the forthcoming action to perform and to examine the possible presence of goal-related activity in this portion of cortex. Moreover, we performed an observation task to clarify the possible contribution of VLPF neurons to the understanding of others’ goal-directed actions. Simple Visuo Motor Task (sVMT). We found four main types of neurons: unimodal sensory-driven, motor-related, unimodal sensory-and-motor, and multisensory neurons. We found a substantial number of VLPF neurons showing both a motor-related discharge and a visual presentation response (sensory-and-motor neurons), with remarkable visuo-motor congruence for the preferred target. Interestingly the discharge of multisensory neurons reflected a behavioural decision independently from the sensory modality of the stimulus allowing the monkey to make it: some encoded a decision to act/refraining from acting (the majority), while others specified one among the four behavioural alternatives. Complex Visuo Motor Task (cVMT). The cVMT was similar to the sVMT, but included a further grasping motor act (grasping a lid in order to remove it, before grasping the target) and was run in two modalities: randomized and in blocks. Substantially, motor-related and sensory-and-motor neurons tested in the cVMTrandomized were activated already during the first grasping motor act, but the selectivity for one of the two graspable targets emerged only during the execution of the second grasping. In contrast, when the cVMT was run in block, almost all these neurons not only discharged during the first grasping motor act, but also displayed the same target selectivity showed in correspondence of the hand contact with the target. Observation Task (OT). A great part of the neurons active during the OT showed a firing rate modulation in correspondence with the action performed by the experimenter. Among them, we found neurons significantly activated during the observation of the experimenter’s action (action observation-related neurons) and neurons responding not only to the action observation, but also to the presented cue stimuli (sensory-and-action observation-related neurons. Among the neurons of the first set, almost the half displayed a target selectivity, with a not clear difference between the two presented targets; Concerning to the second neuronal set, sensory-and-action related neurons, we found a low target selectivity and a not strictly congruence between the selectivity exhibited in the visual response and in the action observation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to test the effects of visual occlusion and fatigue on the motor performance of vertical skills in synchronized swimming. Experienced synchronized swimmers (n = 12) were randomly assigned to either an exercise or nonexercise (control) activity group. Subjective ratings of fatigue were obtained from the swimmers who then each performed four vertical skills under alternating conditions of vision and visual occlusion before and after either a swimming (designed to induce fatigue) or nonphysical activity. A main effect of activity (p < .03) was found for two measures of performance accuracy (lateral and anterior total distance traveled) but not for lateral and anterior maximum deviation from vertical, indicating that fatigue played a role in executing the skills. The data also indicate that the maintenance of a stationary position is a skill of greater difficulty than maintaining a true vertical. In contrast with previous research findings on synchronized swimmers, a significant effect of vision in all conditions was found, with performance decrements in the conditions of visual occlusion showing that vision provided important sensory input for the swimmers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The processing conducted by the visual system requires the combination of signals that are detected at different locations in the visual field. The processes by which these signals are combined are explored here using psychophysical experiments and computer modelling. Most of the work presented in this thesis is concerned with the summation of contrast over space at detection threshold. Previous investigations of this sort have been confounded by the inhomogeneity in contrast sensitivity across the visual field. Experiments performed in this thesis find that the decline in log contrast sensitivity with eccentricity is bilinear, with an initial steep fall-off followed by a shallower decline. This decline is scale-invariant for spatial frequencies of 0.7 to 4 c/deg. A detailed map of the inhomogeneity is developed, and applied to area summation experiments both by incorporating it into models of the visual system and by using it to compensate stimuli in order to factor out the effects of the inhomogeneity. The results of these area summation experiments show that the summation of contrast over area is spatially extensive (occurring over 33 stimulus carrier cycles), and that summation behaviour is the same in the fovea, parafovea, and periphery. Summation occurs according to a fourth-root summation rule, consistent with a “noisy energy” model. This work is extended to investigate the visual deficit in amblyopia, finding that area summation is normal in amblyopic observers. Finally, the methods used to study the summation of threshold contrast over area are adapted to investigate the integration of coherent orientation signals in a texture. The results of this study are described by a two-stage model, with a mandatory local combination stage followed by flexible global pooling of these local outputs. In each study, the results suggest a more extensive combination of signals in vision than has been previously understood.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed motor skill (technique acquisition of indoor rowing). One group was treated with visual information and two groups with audiovisual information (sonification vs. natural sounds). For all three groups learning became evident and remained stable. Participants treated with additional movement sonification showed better performance compared to both other groups. Results indicate that movement sonification enhances motor learning of a complex gross motor skill-even exceeding usually expected acoustic rhythmic effects on motor learning.