940 resultados para Viés GC
Resumo:
Electrospray ionization mass spectrometry (ESI-MS) was used to investigate the binding of 13 alkaloids to two GC-rich DNA duplexes which are critical sequences in human survivin promoter. Negative ion ESI-MS was first applied to screen the binding of the alkaloids to the duplexes. Six alkaloids (including berberine, jatrorrhizine, palmatine, reserpine, berbamine, and tetrandrine) show complexation with the target DNA sequences. Relative binding affinities were estimated from the negative ion ESI data, and the alkaloids show a binding preference to the duplex with higher GC content. Positive ion ESI mass spectra of the complexes were also recorded and compared with those obtained in negative ion mode.
Resumo:
Formation and stabilities of four 14-mer intermolecular DNA triplexes, consisting of third strands with repeating sequence CTCT, CCTT, CTT, or TTT, were studied by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) in the gas phase. The gas-phase stabilities of the triplexes were compared with their CD spectra and melting behaviors in solution, and parallel correlation between two phases were obtained. In the presence of 20 mm NH4+ (pH 5.5), the formation of the TTT triplex was not detected in both solution and the gas phase.
Resumo:
It is discovered that SBA-15 (santa barbara amorphous) can provide the favorable microenvironments and optimal direct electron-transfer tunnels (DETT) of immobilizing cytochrome c (Cyt c) by the preferred orientation on it. A high-redox potential (254 mV vs. Ag/AgCl) was obtained on glassy carbon (GC) electrode modified by immobilizing Cyt c on rod-like SBA-15. With ultraviolet-visible (UV-vis), circular dichroism (CD), FTIR and cyclic voltammetry, it was demonstrated that immobilization made Cyt c exhibits stable and ideal electrochemical characteristics while the biological activity of immobilized Cyt c is retained as usual.
Resumo:
Based on the electrostatic attraction Keggin-type polyoxometalate H4SiW12O40 (SiW12) and small molecule 4-aminobenzo-15-crown-5 ether (4-AB15C5) were alternately deposited on poly (allylamine hydrochloride) (PAH)-derived indium tin oxide (ITO) substrate through a layer-by-layer (LBL) self-assembly, forming a supramolecular multilayer film (film-A). SiW12 was also deposited on a glassy carbon electrode (GCE) derived by 4-AB15C5 via covalent bonding in 0.1 M NaCl aqueous solution and formed a composite monolayer film (film-B). UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy measurements demonstrated that the interactions between SiW12 and 4-AB15C5 in both two film electrodes were the same and caused by the bridging action of oxonium ions. But, the nanostructure in the two film electrodes was different. 4-AB15C5 in film-A was oriented horizontally to ITO substrate, however, that in film-B was oriented vertically to GCE. Namely film-A corresponded to a layer structure, and film-B corresponded to an intercalation structure.
Resumo:
In this paper, the interaction between La3+ and microperoxidase-11 (MP-11) in the imitated physiological solution was investigated with the electrochemical method, circular dichroism (CD) and ultraviolet-visible (UV-vis) absorption spectroscopy. It was found that the interaction ways between La3+ and MP-11 are different with increasing the molar ratio of La3+ and MP-11. When the molar ratio of La3+ and MP-11 is less than 2, La3+ mainly interacts with the metacetonic acid group of the heme group in the MP-11 molecules, causing the increase in the non-planarity of the porphyrin cycle in the heme group and the decrease in the content of the random coil conformation of MP-11. These structural changes would increase the exposure extent of the electrochemical active center of MP-11 and thus, La3+ can promote the electrochemical reaction of MP-11 and its electrocatalytic activity for the reduction of H2O2 at the glassy carbon (GC) electrode. However, when the molar ratio of La3+ and MP-11 is larger than 3, except binding to the carbonyl oxygen of the metacetonic acid group in the heme group, La3+ interacts also with the oxygen-containing groups of the amides in the polypeptide chains of the MP-11 molecules, leading to the increase in the contents of the random coil conformation in the peptide of the MP-11 molecule, comparing with that for the molar ratio of less than 2.
Resumo:
Sequentially spectrophotometric titrations by sodium hydroxide of meso-tetraphenylporphyrin derivatives bearing one, two, three, or four p-hydroxyl groups result in new types of spectra. The strong new bands appear in the visible region with splitting or broadening of the Soret band and its significant loss of oscillator strength. To understand the molecular origin of these phenomena, the Resonance Raman (RR) and Fourier Transform Infrared (FTIR) experiments are carried out. The results demonstrate that the charges of the deprotonated para-hydroxy substituted meso-tetraphenylporphyrins are localized on the substituents, not delocalized into the pi system of the porphyrin macrocycles and that the ground states of the macrocycles remain essentially unperturbed. Both the related behavior of diprotonated tetrakis(p-(dimethylamino)phenyl) porphyrin and protonated Schiff base porphyrins show that the new bands considered as hyperporphyrin spectra are due to pi(phenoxide anion) --> pi*(porphyrin) transitions, where pi is an orbital on the phenoxide anion substitutent and pi* is a LUMO on the porphyrin.
Resumo:
Electrospun poly (vinyl alcohol) (PVA) nanofibers mat was collected on indium tin oxide (ITO) substrate. Heat crosslinked nanofibers mat became water-insoluble and firmly fixed on ITO substrate even in water. Oppositely charged poly (allylamine hydrochloride) (PAH) and Dawson-type polyoxometalate (POM), Na6P2Mo18O62 (P2Mo18), were alternately assembled on PVA nanofibers-coated ITO substrate to construct multilayer film through an electrostatic layer-by-layer (LBL) technique. The scanning electron microscope (SEM) images showed that P2Mo18 multilayer film was selectively deposited on PVA nanofibers while the unoccupied space by nanofibers on bare ITO was acted as substrate at the same time because the electrospun nanofibers have larger surface area and surface energy than the flat substrate. The cyclic voltammograms current responses of the P2Mo18 multilayer film on PVA/ITO electrode showed three well-defined redox couples of P2Mo18, but very small because P2Mo18 multilayer film was selectively deposited on PVA nanofibers with poor conductivity. In addition, the photochromic behavior of P2Mo18 multilayer film on PVA/ITO was investigated through UV-vis spectra and electron spin resonance (ESR). Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) proved that the charge-transfer complex was formed between PAH and P2Mo18 after UV irradiation.
Resumo:
用UV-Vis吸收光谱、荧光光谱、圆二色谱以及核磁共振光谱等手段研究了硫堇(TH)与两个不同序列寡核苷酸的作用。TH与寡核苷酸作用后的吸收光谱和荧光光谱产生了明显的减色红移和荧光猝灭效应。分别计算了TH与[oligo d(GC)]2和[oligo d(AT)]2作用的荧光猝灭常数和结合常数,结果表明TH与GC序列的结合能力比与AT序列更强。通过TH与[oligo d(GC)]2作用后双螺旋链构象变化以及TH质子的1HNMR谱峰明显变宽,进一步说明TH与寡核苷酸结合的序列选择性。
Resumo:
Ultrathin multilayer films have been prepared by means of alternate adsorption of iron(Ill)-substituted heteropolytungstate anions and a cationic redox polymer on the 4-aminobenzoic acid modified glassy carbon electrode surface based on electrostatic layer-by-layer assembly. Cyclic voltammetry, electrochemical impedance spectroscopy and UV-Vis absorption spectrometry have been used to easily monitor the uniformity of thus-formed multilayer films. Especially, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes and is a very useful technique in the characterization of multilayer films because it provides valuable information about the interfacial impedance features. All these results reveal regular film growth with each layer adsorption. The resulting multilayer films can effectively catalyze the reduction of H2O2,NO2- and BrO3-.
Resumo:
The electrooxidation of L-dopa at GC electrode was studied by in situ UV-vis spectroelectrochemistry (SEC) and cyclic voltammetry. The mechanism of electrooxidation and some reaction parameters were obtained. The results showed that the whole electrooxidation reaction of L-dopa at glassy carbon (GC) electrode was an irreversible electrochemical process followed by a chemical reaction in neutral solution (EC mechanism). The spectroelectrochemical data were treated by the double logarithm method together with nonlinear regression, from which the formal potential E-0 = 228 mV, the apparent electron-transfer number of the electrooxidation reaction an = 0.376 (R = 0.99, SD = 0.26), the standard electrochemical rate constant k(0) (3.93 +/- 0.12) x 10(-)4 cm s(-1) (SD = 1.02 x 10(-2)), and the formation equilibrium constant of the following chemical reaction k(c)= (5.38+/-0.34) x 10(-1) s(-1) (SD = 1.02 x 10(-2)) were also obtained.
Resumo:
The effect of La3+ on the electrochemical behavior and structure of heme undecapeptide-microperoxidase-11 (MP-11)-in the aqueous solution was investigated using cyclic voltammetry, circular dichroism (CD) and UV-vis absorption spectrometry. It was found for the first time that La3+ would promote the electrochemical reaction of MP-11 at the glassy carbon (GC) electrode. This is mainly due to the fact that La3+ would induce more beta-turn and alpha-helical conformations from the random coil conformation of MP-11 and increase the non-planarity of the heme.
Resumo:
The optical properties of rare earth ions-activated barium orthophosphate phosphors, Ba-3(PO4)(2):RE (RE = Ce3+, Sm3+, Eu3+, Eu2+, and Tb3+), were investigated in vacuum ultraviolet (VLTV)-Vis range. A band-band transition Of PO43- in Ba-3(PO4)(2) is observed in the region of 150-170 nm. The partial reduction of Eu3+ to Eu2+ was observed and confirmed by luminescent spectra under the VUV-UV excitation. It is proposed that the electronegative defects that formed by aliovalent substitution of Eu3+ on the Ba2+ site in the host are responsible for the reduction process.
Resumo:
The electrochemical behavior of horseradish peroxidase (HRP) in the dimyristoyl phosphatidylcholine (DMPC) bilayer on the glassy carbon (GC) electrode was studied by cyclic voltammetry. The direct electron transfer of HRP was observed in the DMPC bilayer. Only a small cathodic peak was observed for HRP on the bare GC electrode. The electron transfer of HRP in the DMPC membrane is facilitated by DMPC membrane. UV-Vis and circular dichroism (CD) spectroscopy were used to study the interaction between HRP and DMPC membrane. On binding to the DMPC membrane the secondary structure of HRP remains unchanged while there is a substantial change in the conformation of the heme active site. Tapping mode atomic force microscopy (AFM) was first applied for the investigation on the structure of HRP adsorbed on supported phospholipid bilayer on the mica and on the bare mica. HRP molecules adsorb and aggregate on the mica without DMPC bilayer. The aggregation indicates an attractive interaction among the adsorbed molecules. The molecules are randomly distributed in the DMPC bilayer. The adsorption of HRP in the DMPC bilayer changes drastically the domains and defects in the DMPC bilayer due to a strong interaction between HRP and DMPC films.
Resumo:
After meso-tetra (alpha, alpha, alpha, alpha-O-phenylacetyl benzene)porphyrin combined with McAb 1F2, there was a significant hyperchromic effect, indicating that the combination of porphyrin and antibody is rigid and compact, aromatic amino acids exist at the combining sites of antigen in antibody. These aromatic amino acids are Trys and Trps, but the numbers of Trp are more than that found for Trys. The stochiometric ratio of porphyrin to 1F2 is 1:1, the disassociation constant was determined as(2.084+/-0.216) x 10(-10) mol/L by a method of fluorescence quenching, showing that both have a high affinity.