910 resultados para Vertical Component


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. A model-independent reconstruction of the cosmic expansion rate is essential to a robust analysis of cosmological observations. Our goal is to demonstrate that current data are able to provide reasonable constraints on the behavior of the Hubble parameter with redshift, independently of any cosmological model or underlying gravity theory. Methods. Using type Ia supernova data, we show that it is possible to analytically calculate the Fisher matrix components in a Hubble parameter analysis without assumptions about the energy content of the Universe. We used a principal component analysis to reconstruct the Hubble parameter as a linear combination of the Fisher matrix eigenvectors (principal components). To suppress the bias introduced by the high redshift behavior of the components, we considered the value of the Hubble parameter at high redshift as a free parameter. We first tested our procedure using a mock sample of type Ia supernova observations, we then applied it to the real data compiled by the Sloan Digital Sky Survey (SDSS) group. Results. In the mock sample analysis, we demonstrate that it is possible to drastically suppress the bias introduced by the high redshift behavior of the principal components. Applying our procedure to the real data, we show that it allows us to determine the behavior of the Hubble parameter with reasonable uncertainty, without introducing any ad-hoc parameterizations. Beyond that, our reconstruction agrees with completely independent measurements of the Hubble parameter obtained from red-envelope galaxies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was conducted in the Private Reserve Mata do Jambreiro (912 ha), localized in the Iron Quadrangle, Minas Gerais, southeastern portion of the Espinhaco Range, which is predominantly covered by semideciduous seasonal montane forest. Three topographically and physiognomic similar areas located within a continuum forest fragment, distant by 1.3 to 1.5 km were sampled by the point-quadrat method. In each area, 30 points were marked. Individuals with a minimum perimeter at the breast height (PBH) of 15 cm were sampled, totaling 111 species belonging to 40 families. The most representative family was Fabaceae, with 14.29% of the total number of species. Low floristic similarity (5.3% to 34.4%) was observed between the areas, pointing out the importance of distribution of sample units in continuous fragments. Shannon diversity index (H') found was 4.22 and Pielou equability (J) 0.894. Soil analysis showed some differences in chemical composition between the three studied areas and was an important component for the interpretation of the floristic variation found. The low floristic similarity observed here for close areas justify the requirement of more detailed inventories by Brazilian Environmental Agencies for the legal authorization procedures prior to the establishment of new enterprising projects. Also, the professionals that conduct rapid inventories, mainly the Environmental Consultants, should give more attention to this kind of floristic variation and to the methods used to inventory complex forests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-situ measurements in convective clouds (up to the freezing level) over the Amazon basin show that smoke from deforestation fires prevents clouds from precipitating until they acquire a vertical development of at least 4 km, compared to only 1-2 km in clean clouds. The average cloud depth required for the onset of warm rain increased by similar to 350 m for each additional 100 cloud condensation nuclei per cm(3) at a super-saturation of 0.5% (CCN0.5%). In polluted clouds, the diameter of modal liquid water content grows much slower with cloud depth (at least by a factor of similar to 2), due to the large number of droplets that compete for available water and to the suppressed coalescence processes. Contrary to what other studies have suggested, we did not observe this effect to reach saturation at 3000 or more accumulation mode particles per cm(3). The CCN0.5% concentration was found to be a very good predictor for the cloud depth required for the onset of warm precipitation and other microphysical factors, leaving only a secondary role for the updraft velocities in determining the cloud drop size distributions. The effective radius of the cloud droplets (r(e)) was found to be a quite robust parameter for a given environment and cloud depth, showing only a small effect of partial droplet evaporation from the cloud's mixing with its drier environment. This supports one of the basic assumptions of satellite analysis of cloud microphysical processes: the ability to look at different cloud top heights in the same region and regard their r(e) as if they had been measured inside one well developed cloud. The dependence of r(e) on the adiabatic fraction decreased higher in the clouds, especially for cleaner conditions, and disappeared at r(e)>=similar to 10 mu m. We propose that droplet coalescence, which is at its peak when warm rain is formed in the cloud at r(e)=similar to 10 mu m, continues to be significant during the cloud's mixing with the entrained air, cancelling out the decrease in r(e) due to evaporation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models with two conservation laws have only trivial avalanches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type IV secretion systems (T4SS) are used by Gram-negative bacteria to translocate protein and DNA substrates across the cell envelope and into target cells. Translocation across the outer membrane is achieved via a ringed tetradecameric outer membrane complex made up of a small VirB7 lipoprotein (normally 30 to 45 residues in the mature form) and the C-terminal domains of the VirB9 and VirB10 subunits. Several species from the genera of Xanthomonas phytopathogens possess an uncharacterized type IV secretion system with some distinguishing features, one of which is an unusually large VirB7 subunit (118 residues in the mature form). Here, we report the NMR and 1.0 angstrom X-ray structures of the VirB7 subunit from Xanthomonas citri subsp. citri (VirB7(XAC2622)) and its interaction with VirB9. NMR solution studies show that residues 27-41 of the disordered flexible N-terminal region of VirB7(XAC2622) interact specifically with the VirB9 C-terminal domain, resulting in a significant reduction in the conformational freedom of both regions. VirB7(XAC2622) has a unique C-terminal domain whose topology is strikingly similar to that of N0 domains found in proteins from different systems involved in transport across the bacterial outer membrane. We show that VirB7(XAC2622) oligomerizes through interactions involving conserved residues in the N0 domain and residues 42-49 within the flexible N-terminal region and that these homotropic interactions can persist in the presence of heterotropic interactions with VirB9. Finally, we propose that VirB(7XAC2622) oligomerization is compatible with the core complex structure in a manner such that the N0 domains form an extra layer on the perimeter of the tetradecameric ring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For environmental quality assessment, INAA has been applied for determining chemical elements in small (200 mg) and large (200 g) samples of leaves from 200 trees. By applying the Ingamells` constant, the expected percent standard deviation was estimated in 0.9-2.2% for 200 mg samples. Otherwise, for composite samples (200 g), expected standard deviation varied from 0.5 to 10% in spite of analytical uncertainties ranging from 2 to 30%. Results thereby suggested the expression of the degree of representativeness as a source of uncertainty, contributing for increasing of the reliability of environmental studies mainly in the case of composite samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this article is to initiate a philosophical discussion about the ethical component of professional competence in nursing from the perspective of Brazilian nurses. Specifically, this article discusses professional competence in nursing practice in the Brazilian health context, based on two different conceptual frameworks. The first framework is derived from the idealistic and traditional approach while the second views professional competence through the lens of historical and dialectical materialism theory. The philosophical analyses show that the idealistic view of professional competence differs greatly from practice. Combining nursing professional competence with philosophical perspectives becomes a challenge when ideals are opposed by the reality and implications of everyday nursing practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this study were (a) to assess the ability of the rating of perceived exertion (RPE) to predict performance (i.e. number of vertical jumps performed to a fixed jump height) of an intermittent vertical jump exercise, and (b) to determine the ability of RPE to describe the physiological demand of such exercise. Eight healthy men performed intermittent vertical jumps with rest periods of 4, 5, and 6s until fatigue. Heart rate and RPE were recorded every five jumps throughout the sessions. The number of vertical jumps performed was also recorded. Random coefficient growth curve analysis identified relationships between the number of vertical jumps and both RPE and heart rate for which there were similar slopes. In addition, there were no differences between individual slopes and the mean slope for either RPE or heart rate. Moreover, RPE and number of jumps were highly correlated throughout all sessions (r=0.97-0.99; P0.001), as were RPE and heart rate (r=0.93-0.97; P0.001). The findings suggest that RPE can both predict the performance of intermittent vertical jump exercise and describe the physiological demands of such exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to test if the critical power model can be used to determine the critical rest interval (CRI) between vertical jumps. Ten males performed intermittent countermovement jumps on a force platform with different resting periods (4.1 +/- 0.3 s, 5.0 +/- 0.4 s, 5.9 +/- 0.6 s). Jump trials were interrupted when participants could no longer maintain 95% of their maximal jump height. After interruption, number of jumps, total exercise duration and total external work were computed. Time to exhaustion (s) and total external work (J) were used to solve the equation Work = a + b . time. The CRI (corresponding to the shortest resting interval that allowed jump height to be maintained for a long time without fatigue) was determined dividing the average external work needed to jump at a fixed height (J) by b parameter (J/s). in the final session, participants jumped at their calculated CRI. A high coefficient of determination (0.995 +/- 0.007) and the CRI (7.5 +/- 1.6 s) were obtained. In addition, the longer the resting period, the greater the number of jumps (44 13, 71 28, 105 30, 169 53 jumps; p<0.0001), time to exhaustion (179 +/- 50, 351 +/- 120, 610 +/- 141, 1,282 +/- 417 s; p<0.0001) and total external work (28.0 +/- 8.3, 45.0 +/- 16.6, 67.6 +/- 17.8, 111.9 +/- 34.6 kJ; p<0.0001). Therefore, the critical power model may be an alternative approach to determine the CRI during intermittent vertical jumps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to directly compare the causes of fatigue after a short- and a long-rest interval between consecutive stretch-shortening cycle exercises. Eleven healthy males jumped with different resting period lengths (short = 6.1 +/- 1 s, long = 8.6 +/- 0.9 s), performing countermovement jumps at 95% of their maximal jump height until they were unable to sustain the target height. After short- and long-rest, the maximal voluntary isometric contraction knee extension torque decreased (-7%; p = 0.04), comparing to values obtained before exercise protocols. No change was seen from pre- to post-exercise, for either short- or long-rest, in biceps femoris coactivation (-1%; p = 0.95), peak-to-peak amplitude (1%; p = 0.95) and duration (-8%; p = 0.92) of the compound muscle action potential of the vastus lateralis. Evoked peak twitch torque reduced after both exercise protocols (short = -26%, long = -32%; p = 0.003) indicating peripheral fatigue. However, central fatigue occurred only after short-rest evidenced by a reduction in voluntary activation of the quadriceps muscle (-14%; p = 0.013) measured using the interpolated twitch technique. In conclusion, after Stretch-shortening cycle exercise using short rest period length, the cause of fatigue was central and peripheral, while after using long rest period length, the cause of fatigue was peripheral.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is no normalized test to assess the shear strength of vertical interfaces of interconnected masonry walls. The approach used to evaluate this strength is normally indirect and often unreliable. The aim of this study is to propose a new test specimen to eliminate this deficiency. The main features of the proposed specimen are failure caused by shear stress on the vertical interface and a small number of units (blocks). The paper presents a numerical analysis based on the finite element method, with the purpose of showing the theoretical performance of the designed specimen, in terms of its geometry, boundary conditions, and loading scheme, and describes an experimental program using the specimen built with full- and third-scale clay blocks. The main conclusions are that the proposed specimen is easy to build and is appropriate to evaluate the sheaf strength of vertical interfaces of masonry walls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of nucleate boiling on a vertical array of horizontal plain tubes is presented in this paper. Experiments were performed with refrigerant RI 23 at reduced pressures varying from 0.022 to 0.64, tube pitch to diameter ratios of 1.32, 1.53 and 2.00, and heat fluxes from 0.5 to 40 kW/m(2). Brass tubes with external diameters of 19.05 mm and average roughness of 0.12 mu m were used in the experiments. The effect of the tube spacing on the local heat transfer coefficient along the tube array was negligible within the present range of experimental conditions. For partial nucleate boiling, characterized by low heat fluxes, and low reduced pressures, the tube positioning shows a remarkable effect on the heat transfer coefficient. Based on these data, a general correlation for the prediction of the nucleate boiling heat transfer coefficient on a vertical array of horizontal tubes under flooded conditions was proposed. According to this correlation, the ratio between the heat transfer coefficients of a given tube and the lowest tube in the array depends only on the tube row number, the reduced pressure and the heat flux. By using the proposed correlation, most of the experimental heat transfer coefficients obtained in the present study were predicted within +/- 15%. The new correlation compares reasonably well with independent data from the literature. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposite membranes containing polysulfone (PSI) and sodium montmorillonite from Wyoming (MMT) were prepared by a combination of solution dispersion and the immersion step of the wet-phase inversion method. The purpose was to study the MMT addition with contents of 0.5 and 3.0 mass% MMT in the preparation of nanocomposite membranes by means of morphology, thermal, mechanical and hydrophilic properties of nanocomposite membranes and to compare these properties to the pure PSf membrane ones. Small-angle X-ray diffraction patterns revealed the formation of intercalated clay mineral layers in the PSf matrix and TEM images also presented an exfoliated structure. A good dispersion of the clay mineral particles was detected by SEM images. Tensile tests showed that both elongation at break and tensile strength of the nanocomposites were improved in comparison to the pristine PSf. The thermal stability of the nanocomposite membranes, evaluated by onset and final temperatures of degradation, was also enhanced. The hydrophilicity of the nanocomposite membranes, determined by water contact angle measurements, was higher; therefore, the MMT addition was useful to produce more hydrophilic membranes. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many industrial advantages of using mechanical multi-oxides mixtures to obtain ceramic parts by electrophoretic deposition (EPD). This is mainly because one could avoid complex chemical synthesis routes to achieve a desirable composition. However, EPD of these suspensions is not an easy task as well since many different surfaces are present, leading to unexpected suspension behavior. The particles surface potentials and interactions can, however, be predicted by an extension of the DLVO theory. Using this theory, one can control the suspension properties and particles distribution. The objective of this work was to apply the colloidal chemistry theories to promote the formation of a heterocoagulation between ZrO(2) and Y(2)O(3) particles in ethanol suspension to achieve a suitable condition for EPD. After identifying a condition where those particles had opposite surface charges and adequate relative sizes, heterocoagulation was observed at operational pH 7.5, generating an organized agglomerate with ZrO(2) particles surrounding Y(2)O(3), with a net zeta potential of -16.6 mV. Since the agglomerates were stable, EPD could be carried out and homogeneous deposits were obtained. The deposited bodies were sintered at 1600 A degrees C for 4 h and partially stabilized ZrO(2) could be obtained without traces of Y(2)O(3) second phases.