926 resultados para Vegetation and shading
Resumo:
1. Dominant plant functional types (PFTs) are expected to be primary determinants of communities of other above- and below-ground organisms. Here, we report the effects of the experimental removal of different PFTs on arbuscular mycorrhizal fungi (AMF) communities in a shrubland ecosystem in central Argentina. 2. On the basis of the biomass-ratio hypothesis and plant resource use strategy theory, we expected the effect of removal of PFTs on AMF colonization and spores to be proportional to the biomass removed and to be stronger when more conservative PFTs were removed. The treatments applied were: undisturbed control (no plant removed), disturbed control (mechanical disturbance), no shrub (removal of deciduous shrubs), no perennial forb (removal of perennial forbs), no graminoid (removal of graminoids) and no annual forb (removal of annual forbs). AMF colonization was assessed after 5,17 and 29 months. Total density of AMF spores, richness and evenness of morpho-taxa, and AMF functional groups were quantified after 5,17,29,36 and 39 months. 3. Five months after the initial removal we found a significant reduction in total AMF colonization in all plots subjected to PFT removals and in the disturbed control plots, as compared with the undisturbed controls. This effect disappeared afterwards and no subsequent effect on total colonization and colonization by arbuscules was observed. In contrast, a significant increase in colonization by vesicles was observed in months 17 and 29, mainly in no graminoid plots. In general, treatments did not significantly affect AMF spores in the soil. On the other hand, no annual forb promoted transient (12-18 months) higher ammonia availability, and no shrub promoted lower nitrate availability in the longer term (24-28 months). 4. Synthesis. Our experiment, the first to investigate the effects of the removal of different PFTs on AMF communities in natural ecosystems, indicates that AMF communities are resilient to changes in the soil and in the functional composition of vegetation. Furthermore, it does not provide consistent evidence in support of the biomass-ratio hypothesis or differential trait-based direct or indirect effects of different PFTs on AMF in this particular system.
Resumo:
We reconstructed vegetation responses to climate oscillations, fire and human activities since the last glacial maximum in inland NW Iberia, where previous paleoecological research is scarce. Extremely sparse and open vegetation composed of steppic grasslands and heathlands with scattered pioneer trees suggests very cold and dry conditions during the Oldest Dryas, unsuitable for tree survival in the surroundings of the study site. Slight woodland expansion during the Bolling/Allerod was interrupted by the Younger Dryas cooling. Pinewoods dominated for most of the early Holocene, when a marked increase in fire activity occurred. Deciduous trees expanded later reaching their maximum representation during the mid-Holocene. Enhanced fire activity and the presence of coprophilous fungi around 6400-6000 cal yr BP suggest an early human occupation around the site. However, extensive deforestation only started at 4500 calyrBP, when fire was used to clear the tree canopy. Final replacement of woodlands with heathlands, grasslands and cereal crops occurred from 2700 cal yr BP onwards due to land-use intensification. Our paleoecological record can help efforts aimed at restoring the natural vegetation by indicating which communities were dominant at the onset of heavy human impact, thus promoting the recovery of currently rare oak and alder stands.
Resumo:
The deep-sea cores M 16415-2 and M 16416-2 at about 9°N off Sierra Leone were analysed palynologically for the time interval 140,000-70,000 yr B.P. Results were presented in absolute (pollen concentration and pollen influx) and relative diagrams (pollen percentage). In a previous study it was evidenced that in northwest Africa pollen is mainly transported to the Atlantic by wind, so that the efficiency of aeolian pollen transport (pollen flux) could be used to evaluate changes in the intensity of the northeast trade winds. The glacial episodes (represented by the oxygen isotope stages 6 and 4) are characterized by strong northeast trade winds, whereas the last interglacial (stage 5) is characterized by weak trade winds. The pollen influx diagram shows that the intensity of the trade winds increased slightly during the relatively cool intervals of stage 5 (viz. 5.4 and 5.2). Tropical forest had maximally expanded around 124,000 yr B.P. (stage 5.5), around 98,000 yr B.P. (transition of stage 5.3 to 5.2), and around 70,000 yr B.P. (first part of stage 4): an increasing delay of the response of tropical forest to global intervals with maximum temperature is apparent during the last interglacial. As tropical forests need continuous humidity, the record of tropical forest monitors changes in climatic humidity south of the Sahara. During the last interglacial, the southern boundary of the Sahara shifted only little: expansions and contractions of the tropical forest area are correlated with contra-oscillations of the grass-dominated savanna zone. Great latitudinal shifts of the desert savanna boundary, on the contrary, occurred during the penultimate glacial interglacial transition (around 128,000 yr B.P.) to the north, and during the last interglacial-glacial transition (around 65,000 yr B.P.) to the south.
Resumo:
Poem "The colours" by E. Van Blon, part 2, p. [65]-66.
Resumo:
Thesis (M. S.)--University of Illinois at Urbana-Champaign.
Resumo:
Mode of access: Internet.
Resumo:
Includes index.
Resumo:
Goldsmiths'-Kress no. 08603.
Resumo:
Includes bibliographical references (p. 80-82).
Resumo:
Includes bibliographical references (p. 47-48).
Resumo:
Caption title.