915 resultados para Vacuum filtration
Resumo:
We introduce the inverse annihilation and creation operators a-1 and a(dagger-1) by their actions on the number states. We show that the squeezed vacuum exp(1/2xia(dagger2)]\0] and squeezed first number state exp[1.2xia(dagger2)]\n = 1] are respectively the eigenstates of the operators (a(dagger-1)a) and (aa(dagger-1)) with the eigenvalue xi.
Resumo:
A vacuum interrupter utilises magnetic field for effective arc extinction. Based on the type of field, the vacuum interrupters are classified as radial or axial magnetic type of vacuum interrupters. This paper focuses on the axial magnetic field type of vacuum interrupters. The magnitude and distribution of the axial magnetic field is a function of the design of the contact system. It also depends on the orientations of the movable and fixed contact systems with respect to each other. This paper investigates the dependence of arcing and erosion performance of the contact on the magnitude and distribution of this axially oriented magnetic field. The experimental observations are well supported by electromagnetic simulations.
Resumo:
The vacuum interrupter is extensively employed in the medium voltage switchgear for the interruption of the short-circuit current. The voltage across the arc during current interruption is termed as the arc voltage. The nature and magnitude of this arc voltage is indicative of the performance of the contacts and the vacuum interrupter as a whole. Also, the arc voltage depends on the parameters like the magnitude of short-circuit current, the arcing time, the point of opening of the contacts, the geometry and area of the contacts and the type of magnetic field. This paper investigates the dependency of the arc voltage on some of these parameters. The paper also discusses the usefulness of the arc voltage in diagnosing the performance of the contacts.
Resumo:
Recently, the demand of the steel having superior chemical and physical properties has increased for which the content of carbon must be in ultra low range. There are many processes which can produce low carbon steel such as Tank degasser and RH (Rheinstahl-Heraeus) processes. It has been claimed that using a new process, called REDA (Revolutionary Degassing Activator), one can achieve the carbon content below 10ppm in less time. REDA process in terms of installment cost is in between tank degasser and RH processes. As such, REDA process has not been studied thoroughly. Fluid flow phenomena affect the decarburization rate the most besides the chemical reaction rate. Therefore, momentum balance equations along with k-ε turbulent model have been solved for gas and liquid phases in two-dimension (2D) for REDA process. The fluid flow phenomena have been studied in details for this process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that design of snorkel affects the mixing process of the bath significantly.
Resumo:
The physical chemistry of "aluminothermic" reduction of calcium oxide in vacuum is analyzed. Basic thermodynamic data required for the analysis have been generated by a variety of experiments. These include activity measurements in liquid AI-Ca alloys and determination of the Gibbs energies of formation of calcium aluminates. These data have been correlated with phase relations in the Ca-AI-0 system at 1373 K. The various stages of reduction, the end products and the corresponding equilibrium partial pressures of calcium have been established from thermodynamic considerations. In principle, the recovery of calcium can be improved by reducing the pressure in the reactor. However,, the cost of a high vacuum system and the enhanced time for reduction needed to achieve higher yields makes such a practice uneconomic. Aluminum contamination of calcium also increases at low pressures. The best compromise is to carry the reduction up to the stage where 3CaO-Al,O, is formed as the product. This corresponds to an equilibrium calcium partial pressure of 31.3 Pa at 1373 K and 91.6 Pa at 1460 K. Calcium can be extracted at this pressure using mechanical pumps in approximately 8 to 15 hr, depending on the size and the fill ratio of the retort and porosity of the charge briquettes.
Resumo:
Sulfur and oxygen dissolved in nickel and cupronickel melts can be remwed as gaseous oxides of sulfur by a vacuum treatment. Presented in this paper is a new matched thermcxhemical disgran~ that permit.. direct evaluation of the equilibrium partial pressure of SO, as a function of temperature wer an alloy of specified compition. The matched thermochemical diagram consists of a central plot which shows the integral Gibbs' energy of mixing for the binary system SO, at different temperatures. The central plot is flanked on either side by terminal plots of the chemical potentials of oxygen and sulfur, as functions of temperature, for different alloy compositions. By projecting the chemical wtentials of oxygen and sulfur from the terminal lots on to the central diagram, ihe equilibrium partial pressure of S0,can be directly ;cad on the nomograms on the central plot at different temperatures. The matched therrnochemical diagrams are useful in assuring the efficiency of vacuum refining.
Resumo:
The firing characteristics of the simple triggered vacuum gap (TVG) using lead zirconate titanate as dielectric material in the triggered gap are described. This TVG has a long life of about 2000 firings without appreciable deterioration of the electrical properties for main discharge currents upto 3 kA and is much superior to these made with Supramica (Mycalex Corporation of America) and silicon carbide as used in our earlier investigations. The effects of the variation of trigger voltage, trigger curcit, trigger pulse duration, trigger pulse energy, main gap voltage, main gap separation and main circuit energy on the firing characteristics have been studied. Trigger resistance progressively decreases with the number of firings of the trigger gap and as well as of the main gap. This decrease in the trigger resistance is more pronounced for main discharge currents exceeding 10 kA. The minimum trigger current required for reliable firing decreases with increase of trigger voltage upto a threshold value of 1.2 kV and there-onwards saturates at 3.0 A. This value is less than that obtained with Supramica as dielectric material. One hundred percent firing probability of the TVG at main gap voltages as low as 50 V is possible and this low voltage breakdown of the main gap appears to be similar to the breakdown at low pressures between moving plasma by other workers. and the cold electrodes immersed in it, as reported.
Resumo:
The time delay to the firing of a triggered vacuum gap (t.v.g.) containing barium titanate in the trigger gap is investigated as a function of the main gap voltage, main gap length, trigger pulse duration, trigger current and trigger voltage. The time delay decreases steadily with increasing trigger current and trigger voltage until it reaches saturation. The effect of varying the main gap length and voltage on the time delay is not strong. Before `conditioning�¿ the t.v.g. two groups of time delays, long (>100�¿s) and short (<10�¿s), are simultaneously observed when a large number of trials are conducted. After conditioning, only the group of short time delays are present. This is attributed to the marked reduction of the resistance of the trigger gap across the surface of the solid dielectric resulting directly from the conditioning effect.
Resumo:
A method has been suggested for the measurement of prebreakdown currents under a.c. conditions. Measurements were made using hemispherical stainless steel electrodes and currents from 10~3 A down to 10~7 A have been measured.
Resumo:
Although some researchers have published friction and wear data of Plasma Nitride (PN) coatings, the tribological behavior of PN/PN Pairs in high vacuum environment has not been published so far In order to bridge this knowledge gap, tribological tests under dry conditions have been conducted on PN/PN Pairs for varying temperatures of 25, 200, 400 and 500 degrees C in high vacuum (1.6 x 10(-4) bar) environment. The PN coatings showed good wear resistance layer on the ring surface. The PN coatings were removed only from the pin surface for all the tests since it contacts at a point. The friction and wear were low at lower temperatures and it eliminated adhesion between the contact surfaces until the coating was completely removed from the pin surface. (C) 2011 Journal of Mechanical Engineering. All rights reserved.
Resumo:
We consider the (2 + 1) flavor Polyakov quark-meson model and study the effect of including fermion vacuum fluctuations on the thermodynamics and phase diagram. The resulting model predictions are compared to the recent QCD lattice simulations by the HotQCD and Wuppertal-Budapest collaborations. The variation of the thermodynamic quantities across the phase transition region becomes smoother. This results in better agreement with the lattice data. Depending on the value of the mass of the sigma meson, including the vacuum term results in either pushing the critical end point into higher values of the chemical potential or excluding the possibility of a critical end point altogether.
Resumo:
In recent times the demand of ultra-low carbon steel (ULCS) with improved mechanical properties such as good ductility and good workability has been increased as it is used to produce cold-rolled steel sheets for automobiles. For producing ULCS efficiently, it is necessary to improve the productivity of the vacuum degassers such as RH, DH and tank degasser. Recently, it has been claimed that using a new process, called REDA (revolutionary degassing activator), one can achieve the carbon content below 10 ppm in less time. As such, REDA process has not been studied thoroughly in terms of fluid flow and mass transfer which is a necessary precursor to understand and design this process. Therefore, momentum and mass transfer of the process has been studied by solving momentum and species balance equations along with k-epsilon turbulent model in two-dimension (2D) for REDA process. Similarly, computational fluid dynamic studies have been made in 2D for tank and RH degassers to compare them with REDA process. Computational results have been validated with published experimental and theoretical data. It is found that REDA process is the most efficient among all these processes in terms of mixing efficiency. Fluid flow phenomena have been studied in details for REDA process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that design of snorkel affects the melt circulation in the bath significantly.
Resumo:
Single and two-stage Pulse Tube Cryocoolers (PTC) have been designed, fabricated and experimentally studied. The single stage PTC reaches a no-load temperature of similar to 29 K at its cold end, the two-stage PTC reaches similar to 2.9 K in its second stage cold end and similar to 60 K in its first stage cold end. The two-stage Pulse Tube Cryocooler provides a cooling power of similar to 250 mW at 4.2 K. The single stage system uses stainless steel meshes along with Pb granules as its regenerator materials, while the two-stage PTC uses combinations of Pb along with Er3Ni/HoCu2 as the second stage regenerator materials. Normally, the above systems are insulated by thermal radiation shields and mounted inside a vacuum chamber which is maintained at high vacuum. To evaluate the performance of these systems in the possible conditions of loss of vacuum with and without radiation shields, experimental studies have been performed. The heat-in-leak under such severe conditions has been estimated from the heat load characteristics of the respective stages. The experimental results are analyzed to obtain surface emissivities and effective thermal conductivities as a function of interspace pressure.
Resumo:
CsI can be used as a photocathode material in UV photon detectors. The detection efficiency of the detector strongly depends on the photoemission property of the photocathode. CsI is very hygroscopic in nature. This limits the photoelectron yield from the photocathode when exposed to humid air even for a short duration during photocathode mounting or transfer. We report here on the improvement of photoemission properties of both thick (300 nm) and thin (30 nm) UV-sensitive CsI film exposed to humid air by the process of vacuum treatment. (C) 2013 Optical Society of America