981 resultados para Unsupervised Learning


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper examines the recovery of user context in indoor environmnents with existing wireless infrastructures to enable assistive systems. We present a novel approach to the extraction of user context, casting the problem of context recovery as an unsupervised, clustering problem. A well known density-based clustering technique, DBSCAN, is adapted to recover user context that includes user motion state, and significant places the user visits from WiFi observations consisting of access point id and signal strength. Furthermore, user rhythms or sequences of places the user visits periodically are derived from the above low level contexts by employing state-of-the-art probabilistic clustering technique, the Latent Dirichiet Allocation (LDA), to enable a variety of application services. Experimental results with real data are presented to validate the proposed unsupervised learning approach and demonstrate its applicability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A fundamental task in pervasive computing is reliable acquisition of contexts from sensor data. This is crucial to the operation of smart pervasive systems and services so that they might behave efficiently and appropriately upon a given context. Simple forms of context can often be extracted directly from raw data. Equally important, or more, is the hidden context and pattern buried inside the data, which is more challenging to discover. Most of existing approaches borrow methods and techniques from machine learning, dominantly employ parametric unsupervised learning and clustering techniques. Being parametric, a severe drawback of these methods is the requirement to specify the number of latent patterns in advance. In this paper, we explore the use of Bayesian nonparametric methods, a recent data modelling framework in machine learning, to infer latent patterns from sensor data acquired in a pervasive setting. Under this formalism, nonparametric prior distributions are used for data generative process, and thus, they allow the number of latent patterns to be learned automatically and grow with the data - as more data comes in, the model complexity can grow to explain new and unseen patterns. In particular, we make use of the hierarchical Dirichlet processes (HDP) to infer atomic activities and interaction patterns from honest signals collected from sociometric badges. We show how data from these sensors can be represented and learned with HDP. We illustrate insights into atomic patterns learned by the model and use them to achieve high-performance clustering. We also demonstrate the framework on the popular Reality Mining dataset, illustrating the ability of the model to automatically infer typical social groups in this dataset. Finally, our framework is generic and applicable to a much wider range of problems in pervasive computing where one needs to infer high-level, latent patterns and contexts from sensor data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Healthcare plays an important role in promoting the general health and well-being of people around the world. The difficulty in healthcare data classification arises from the uncertainty and the high-dimensional nature of the medical data collected. This paper proposes an integration of fuzzy standard additive model (SAM) with genetic algorithm (GA), called GSAM, to deal with uncertainty and computational challenges. GSAM learning process comprises three continual steps: rule initialization by unsupervised learning using the adaptive vector quantization clustering, evolutionary rule optimization by GA and parameter tuning by the gradient descent supervised learning. Wavelet transformation is employed to extract discriminative features for high-dimensional datasets. GSAM becomes highly capable when deployed with small number of wavelet features as its computational burden is remarkably reduced. The proposed method is evaluated using two frequently-used medical datasets: the Wisconsin breast cancer and Cleveland heart disease from the UCI Repository for machine learning. Experiments are organized with a five-fold cross validation and performance of classification techniques are measured by a number of important metrics: accuracy, F-measure, mutual information and area under the receiver operating characteristic curve. Results demonstrate the superiority of the GSAM compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus helpful as a decision support system for medical practitioners in the healthcare practice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomedical time series clustering that automatically groups a collection of time series according to their internal similarity is of importance for medical record management and inspection such as bio-signals archiving and retrieval. In this paper, a novel framework that automatically groups a set of unlabelled multichannel biomedical time series according to their internal structural similarity is proposed. Specifically, we treat a multichannel biomedical time series as a document and extract local segments from the time series as words. We extend a topic model, i.e., the Hierarchical probabilistic Latent Semantic Analysis (H-pLSA), which was originally developed for visual motion analysis to cluster a set of unlabelled multichannel time series. The H-pLSA models each channel of the multichannel time series using a local pLSA in the first layer. The topics learned in the local pLSA are then fed to a global pLSA in the second layer to discover the categories of multichannel time series. Experiments on a dataset extracted from multichannel Electrocardiography (ECG) signals demonstrate that the proposed method performs better than previous state-of-the-art approaches and is relatively robust to the variations of parameters including length of local segments and dictionary size. Although the experimental evaluation used the multichannel ECG signals in a biometric scenario, the proposed algorithm is a universal framework for multichannel biomedical time series clustering according to their structural similarity, which has many applications in biomedical time series management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Statistics-based Internet traffic classification using machine learning techniques has attracted extensive research interest lately, because of the increasing ineffectiveness of traditional port-based and payload-based approaches. In particular, unsupervised learning, that is, traffic clustering, is very important in real-life applications, where labeled training data are difficult to obtain and new patterns keep emerging. Although previous studies have applied some classic clustering algorithms such as K-Means and EM for the task, the quality of resultant traffic clusters was far from satisfactory. In order to improve the accuracy of traffic clustering, we propose a constrained clustering scheme that makes decisions with consideration of some background information in addition to the observed traffic statistics. Specifically, we make use of equivalence set constraints indicating that particular sets of flows are using the same application layer protocols, which can be efficiently inferred from packet headers according to the background knowledge of TCP/IP networking. We model the observed data and constraints using Gaussian mixture density and adapt an approximate algorithm for the maximum likelihood estimation of model parameters. Moreover, we study the effects of unsupervised feature discretization on traffic clustering by using a fundamental binning method. A number of real-world Internet traffic traces have been used in our evaluation, and the results show that the proposed approach not only improves the quality of traffic clusters in terms of overall accuracy and per-class metrics, but also speeds up the convergence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The techniques of Machine Learning are applied in classification tasks to acquire knowledge through a set of data or information. Some learning methods proposed in literature are methods based on semissupervised learning; this is represented by small percentage of labeled data (supervised learning) combined with a quantity of label and non-labeled examples (unsupervised learning) during the training phase, which reduces, therefore, the need for a large quantity of labeled instances when only small dataset of labeled instances is available for training. A commom problem in semi-supervised learning is as random selection of instances, since most of paper use a random selection technique which can cause a negative impact. Much of machine learning methods treat single-label problems, in other words, problems where a given set of data are associated with a single class; however, through the requirement existent to classify data in a lot of domain, or more than one class, this classification as called multi-label classification. This work presents an experimental analysis of the results obtained using semissupervised learning in troubles of multi-label classification using reliability parameter as an aid in the classification data. Thus, the use of techniques of semissupervised learning and besides methods of multi-label classification, were essential to show the results

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Data classification is a task with high applicability in a lot of areas. Most methods for treating classification problems found in the literature dealing with single-label or traditional problems. In recent years has been identified a series of classification tasks in which the samples can be labeled at more than one class simultaneously (multi-label classification). Additionally, these classes can be hierarchically organized (hierarchical classification and hierarchical multi-label classification). On the other hand, we have also studied a new category of learning, called semi-supervised learning, combining labeled data (supervised learning) and non-labeled data (unsupervised learning) during the training phase, thus reducing the need for a large amount of labeled data when only a small set of labeled samples is available. Thus, since both the techniques of multi-label and hierarchical multi-label classification as semi-supervised learning has shown favorable results with its use, this work is proposed and used to apply semi-supervised learning in hierarchical multi-label classication tasks, so eciently take advantage of the main advantages of the two areas. An experimental analysis of the proposed methods found that the use of semi-supervised learning in hierarchical multi-label methods presented satisfactory results, since the two approaches were statistically similar results

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Redes neurais pulsadas - redes que utilizam uma codificação temporal da informação - têm despontado como uma promissora abordagem dentro do paradigma conexionista, emergente da ciência cognitiva. Um desses novos modelos é a rede neural pulsada com função de base radial, que é capaz de armazenar informação nos tempos de atraso axonais dos neurônios. Um algoritmo de aprendizado foi aplicado com sucesso nesta rede pulsada, que se mostrou capaz de mapear uma seqüência de pulsos de entrada em uma seqüência de pulsos de saída. Mais recentemente, um método baseado no uso de campos receptivos gaussianos foi proposto para codificar dados constantes em uma seqüência de pulsos temporais. Este método tornou possível a essa rede lidar com dados computacionais. O processo de aprendizado desta nova rede não se encontra plenamente compreendido e investigações mais profundas são necessárias para situar este modelo dentro do contexto do aprendizado de máquinas e também para estabelecer as habilidades e limitações desta rede. Este trabalho apresenta uma investigação desse novo classificador e um estudo de sua capacidade de agrupar dados em três dimensões, particularmente procurando estabelecer seus domínios de aplicação e horizontes no campo da visão computacional.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural health monitoring (SHM) is related to the ability of monitoring the state and deciding the level of damage or deterioration within aerospace, civil and mechanical systems. In this sense, this paper deals with the application of a two-step auto-regressive and auto-regressive with exogenous inputs (AR-ARX) model for linear prediction of damage diagnosis in structural systems. This damage detection algorithm is based on the. monitoring of residual error as damage-sensitive indexes, obtained through vibration response measurements. In complex structures there are. many positions under observation and a large amount of data to be handed, making difficult the visualization of the signals. This paper also investigates data compression by using principal component analysis. In order to establish a threshold value, a fuzzy c-means clustering is taken to quantify the damage-sensitive index in an unsupervised learning mode. Tests are made in a benchmark problem, as proposed by IASC-ASCE with different damage patterns. The diagnosis that was obtained showed high correlation with the actual integrity state of the structure. Copyright © 2007 by ABCM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The prenatal development of neural circuits must provide sufficient configuration to support at least a set of core postnatal behaviors. Although knowledge of various genetic and cellular aspects of development is accumulating rapidly, there is less systematic understanding of how these various processes play together in order to construct such functional networks. Here we make some steps toward such understanding by demonstrating through detailed simulations how a competitive co-operative ('winner-take-all', WTA) network architecture can arise by development from a single precursor cell. This precursor is granted a simplified gene regulatory network that directs cell mitosis, differentiation, migration, neurite outgrowth and synaptogenesis. Once initial axonal connection patterns are established, their synaptic weights undergo homeostatic unsupervised learning that is shaped by wave-like input patterns. We demonstrate how this autonomous genetically directed developmental sequence can give rise to self-calibrated WTA networks, and compare our simulation results with biological data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta Tesis tiene como objetivo principal el desarrollo de métodos de identificación del daño que sean robustos y fiables, enfocados a sistemas estructurales experimentales, fundamentalmente a las estructuras de hormigón armado reforzadas externamente con bandas fibras de polímeros reforzados (FRP). El modo de fallo de este tipo de sistema estructural es crítico, pues generalmente es debido a un despegue repentino y frágil de la banda del refuerzo FRP originado en grietas intermedias causadas por la flexión. La detección de este despegue en su fase inicial es fundamental para prevenir fallos futuros, que pueden ser catastróficos. Inicialmente, se lleva a cabo una revisión del método de la Impedancia Electro-Mecánica (EMI), de cara a exponer sus capacidades para la detección de daño. Una vez la tecnología apropiada es seleccionada, lo que incluye un analizador de impedancias así como novedosos sensores PZT para monitorización inteligente, se ha diseñado un procedimiento automático basado en los registros de impedancias de distintas estructuras de laboratorio. Basándonos en el hecho de que las mediciones de impedancias son posibles gracias a una colocación adecuada de una red de sensores PZT, la estimación de la presencia de daño se realiza analizando los resultados de distintos indicadores de daño obtenidos de la literatura. Para que este proceso sea automático y que no sean necesarios conocimientos previos sobre el método EMI para realizar un experimento, se ha diseñado e implementado un Interfaz Gráfico de Usuario, transformando la medición de impedancias en un proceso fácil e intuitivo. Se evalúa entonces el daño a través de los correspondientes índices de daño, intentando estimar no sólo su severidad, sino también su localización aproximada. El desarrollo de estos experimentos en cualquier estructura genera grandes cantidades de datos que han de ser procesados, y algunas veces los índices de daño no son suficientes para una evaluación completa de la integridad de una estructura. En la mayoría de los casos se pueden encontrar patrones de daño en los datos, pero no se tiene información a priori del estado de la estructura. En este punto, se ha hecho una importante investigación en técnicas de reconocimiento de patrones particularmente en aprendizaje no supervisado, encontrando aplicaciones interesantes en el campo de la medicina. De ahí surge una idea creativa e innovadora: detectar y seguir la evolución del daño en distintas estructuras como si se tratase de un cáncer propagándose por el cuerpo humano. En ese sentido, las lecturas de impedancias se emplean como información intrínseca de la salud de la propia estructura, de forma que se pueden aplicar las mismas técnicas que las empleadas en la investigación del cáncer. En este caso, se ha aplicado un algoritmo de clasificación jerárquica dado que ilustra además la clasificación de los datos de forma gráfica, incluyendo información cualitativa y cuantitativa sobre el daño. Se ha investigado la efectividad de este procedimiento a través de tres estructuras de laboratorio, como son una viga de aluminio, una unión atornillada de aluminio y un bloque de hormigón reforzado con FRP. La primera ayuda a mostrar la efectividad del método en sencillos escenarios de daño simple y múltiple, de forma que las conclusiones extraídas se aplican sobre los otros dos, diseñados para simular condiciones de despegue en distintas estructuras. Demostrada la efectividad del método de clasificación jerárquica de lecturas de impedancias, se aplica el procedimiento sobre las estructuras de hormigón armado reforzadas con bandas de FRP objeto de esta tesis, detectando y clasificando cada estado de daño. Finalmente, y como alternativa al anterior procedimiento, se propone un método para la monitorización continua de la interfase FRP-Hormigón, a través de una red de sensores FBG permanentemente instalados en dicha interfase. De esta forma, se obtienen medidas de deformación de la interfase en condiciones de carga continua, para ser implementadas en un modelo de optimización multiobjetivo, cuya solución se haya por medio de una expansión multiobjetivo del método Particle Swarm Optimization (PSO). La fiabilidad de este último método de detección se investiga a través de sendos ejemplos tanto numéricos como experimentales. ABSTRACT This thesis aims to develop robust and reliable damage identification methods focused on experimental structural systems, in particular Reinforced Concrete (RC) structures externally strengthened with Fiber Reinforced Polymers (FRP) strips. The failure mode of this type of structural system is critical, since it is usually due to sudden and brittle debonding of the FRP reinforcement originating from intermediate flexural cracks. Detection of the debonding in its initial stage is essential thus to prevent future failure, which might be catastrophic. Initially, a revision of the Electro-Mechanical Impedance (EMI) method is carried out, in order to expose its capabilities for local damage detection. Once the appropriate technology is selected, which includes impedance analyzer as well as novel PZT sensors for smart monitoring, an automated procedure has been design based on the impedance signatures of several lab-scale structures. On the basis that capturing impedance measurements is possible thanks to an adequately deployed PZT sensor network, the estimation of damage presence is done by analyzing the results of different damage indices obtained from the literature. In order to make this process automatic so that it is not necessary a priori knowledge of the EMI method to carry out an experimental test, a Graphical User Interface has been designed, turning the impedance measurements into an easy and intuitive procedure. Damage is then assessed through the analysis of the corresponding damage indices, trying to estimate not only the damage severity, but also its approximate location. The development of these tests on any kind of structure generates large amounts of data to be processed, and sometimes the information provided by damage indices is not enough to achieve a complete analysis of the structural health condition. In most of the cases, some damage patterns can be found in the data, but none a priori knowledge of the health condition is given for any structure. At this point, an important research on pattern recognition techniques has been carried out, particularly on unsupervised learning techniques, finding interesting applications in the medicine field. From this investigation, a creative and innovative idea arose: to detect and track the evolution of damage in different structures, as if it were a cancer propagating through a human body. In that sense, the impedance signatures are used to give intrinsic information of the health condition of the structure, so that the same clustering algorithms applied in the cancer research can be applied to the problem addressed in this dissertation. Hierarchical clustering is then applied since it also provides a graphical display of the clustered data, including quantitative and qualitative information about damage. The performance of this approach is firstly investigated using three lab-scale structures, such as a simple aluminium beam, a bolt-jointed aluminium beam and an FRP-strengthened concrete specimen. The first one shows the performance of the method on simple single and multiple damage scenarios, so that the first conclusions can be extracted and applied to the other two experimental tests, which are designed to simulate a debonding condition on different structures. Once the performance of the impedance-based hierarchical clustering method is proven to be successful, it is then applied to the structural system studied in this dissertation, the RC structures externally strengthened with FRP strips, where the debonding failure in the interface between the FRP and the concrete is successfully detected and classified, proving thus the feasibility of this method. Finally, as an alternative to the previous approach, a continuous monitoring procedure of the FRP-Concrete interface is proposed, based on an FBGsensors Network permanently deployed within that interface. In this way, strain measurements can be obtained under controlled loading conditions, and then they are used in order to implement a multi-objective model updating method solved by a multi-objective expansion of the Particle Swarm Optimization (PSO) method. The feasibility of this last proposal is investigated and successfully proven on both numerical and experimental RC beams strengthened with FRP.