198 resultados para Unstressed Wordfinal Vowels
Resumo:
Optical Character Recognition plays an important role in Digital Image Processing and Pattern Recognition. Even though ambient study had been performed on foreign languages like Chinese and Japanese, effort on Indian script is still immature. OCR in Malayalam language is more complex as it is enriched with largest number of characters among all Indian languages. The challenge of recognition of characters is even high in handwritten domain, due to the varying writing style of each individual. In this paper we propose a system for recognition of offline handwritten Malayalam vowels. The proposed method uses Chain code and Image Centroid for the purpose of extracting features and a two layer feed forward network with scaled conjugate gradient for classification
Resumo:
Magnetism and magnetic materials have been playing a lead role in improving the quality of life. They are increasingly being used in a wide variety of applications ranging from compasses to modern technological devices. Metallic glasses occupy an important position among magnetic materials. They assume importance both from a scientific and an application point of view since they represent an amorphous form of condensed matter with significant deviation from thermodynamic equilibrium. Metallic glasses having good soft magnetic properties are widely used in tape recorder heads, cores of high-power transformers and metallic shields. Superconducting metallic glasses are being used to produce high magnetic fields and magnetic levitation effect. Upon heat treatment, they undergo structural relaxation leading to subtle rearrangements of constituent atoms. This leads to densification of amorphous phase and subsequent nanocrystallisation. The short-range structural relaxation phenomenon gives rise to significant variations in physical, mechanical and magnetic properties. Magnetic amorphous alloys of Co-Fe exhibit excellent soft magnetic properties which make them promising candidates for applications as transformer cores, sensors, and actuators. With the advent of microminiaturization and nanotechnology, thin film forms of these alloys are sought after for soft under layers for perpendicular recording media. The thin film forms of these alloys can also be used for fabrication of magnetic micro electro mechanical systems (magnetic MEMS). In bulk, they are drawn in the form of ribbons, often by melt spinning. The main constituents of these alloys are Co, Fe, Ni, Si, Mo and B. Mo acts as the grain growth inhibitor and Si and B facilitate the amorphous nature in the alloy structure. The ferromagnetic phases such as Co-Fe and Fe-Ni in the alloy composition determine the soft magnetic properties. The grain correlation length, a measure of the grain size, often determines the soft magnetic properties of these alloys. Amorphous alloys could be restructured in to their nanocrystalline counterparts by different techniques. The structure of nanocrystalline material consists of nanosized ferromagnetic crystallites embedded in an amorphous matrix. When the amorphous phase is ferromagnetic, they facilitate exchange coupling between nanocrystallites. This exchange coupling results in the vanishing of magnetocrystalline anisotropy which improves the soft magnetic properties. From a fundamental perspective, exchange correlation length and grain size are the deciding factors that determine the magnetic properties of these nanocrystalline materials. In thin films, surfaces and interfaces predominantly decides the bulk property and hence tailoring the surface roughness and morphology of the film could result in modified magnetic properties. Surface modifications can be achieved by thermal annealing at various temperatures. Ion irradiation is an alternative tool to modify the surface/structural properties. The surface evolution of a thin film under swift heavy ion (SHI) irradiation is an outcome of different competing mechanism. It could be sputtering induced by SHI followed by surface roughening process and the material transport induced smoothening process. The impingement of ions with different fluence on the alloy is bound to produce systematic microstructural changes and this could effectively be used for tailoring magnetic parameters namely coercivity, saturation magnetization, magnetic permeability and remanence of these materials. Swift heavy ion irradiation is a novel and an ingenious tool for surface modification which eventually will lead to changes in the bulk as well as surface magnetic property. SHI has been widely used as a method for the creation of latent tracks in thin films. The bombardment of SHI modifies the surfaces or interfaces or creates defects, which induces strain in the film. These changes will have profound influence on the magnetic anisotropy and the magnetisation of the specimen. Thus inducing structural and morphological changes by thermal annealing and swift heavy ion irradiation, which in turn induce changes in the magnetic properties of these alloys, is one of the motivation of this study. Multiferroic and magneto-electrics is a class of functional materials with wide application potential and are of great interest to material scientists and engineers. Magnetoelectric materials combine both magnetic as well as ferroelectric properties in a single specimen. The dielectric properties of such materials can be controlled by the application of an external magnetic field and the magnetic properties by an electric field. Composites with magnetic and piezo/ferroelectric individual phases are found to have strong magnetoelectric (ME) response at room temperature and hence are preferred to single phasic multiferroic materials. Currently research in this class of materials is towards optimization of the ME coupling by tailoring the piezoelectric and magnetostrictive properties of the two individual components of ME composites. The magnetoelectric coupling constant (MECC) (_ ME) is the parameter that decides the extent of interdependence of magnetic and electric response of the composite structure. Extensive investigates have been carried out in bulk composites possessing on giant ME coupling. These materials are fabricated by either gluing the individual components to each other or mixing the magnetic material to a piezoelectric matrix. The most extensively investigated material combinations are Lead Zirconate Titanate (PZT) or Lead Magnesium Niobate-Lead Titanate (PMNPT) as the piezoelectric, and Terfenol-D as the magnetostrictive phase and the coupling is measured in different configurations like transverse, longitudinal and inplane longitudinal. Fabrication of a lead free multiferroic composite with a strong ME response is the need of the hour from a device application point of view. The multilayer structure is expected to be far superior to bulk composites in terms of ME coupling since the piezoelectric (PE) layer can easily be poled electrically to enhance the piezoelectricity and hence the ME effect. The giant magnetostriction reported in the Co-Fe thin films makes it an ideal candidate for the ferromagnetic component and BaTiO3 which is a well known ferroelectric material with improved piezoelectric properties as the ferroelectric component. The multilayer structure of BaTiO3- CoFe- BaTiO3 is an ideal system to understand the underlying fundamental physics behind the ME coupling mechanism. Giant magnetoelectric coupling coefficient is anticipated for these multilayer structures of BaTiO3-CoFe-BaTiO3. This makes it an ideal candidate for cantilever applications in magnetic MEMS/NEMS devices. SrTiO3 is an incipient ferroelectric material which is paraelectric up to 0K in its pure unstressed form. Recently few studies showed that ferroelectricity can be induced by application of stress or by chemical / isotopic substitution. The search for room temperature magnetoelectric coupling in SrTiO3-CoFe-SrTiO3 multilayer structures is of fundamental interest. Yet another motivation of the present work is to fabricate multilayer structures consisting of CoFe/ BaTiO3 and CoFe/ SrTiO3 for possible giant ME coupling coefficient (MECC) values. These are lead free and hence promising candidates for MEMS applications. The elucidation of mechanism for the giant MECC also will be the part of the objective of this investigation.
Resumo:
The statistical analysis of literary style is the part of stylometry that compares measurable characteristics in a text that are rarely controlled by the author, with those in other texts. When the goal is to settle authorship questions, these characteristics should relate to the author’s style and not to the genre, epoch or editor, and they should be such that their variation between authors is larger than the variation within comparable texts from the same author. For an overview of the literature on stylometry and some of the techniques involved, see for example Mosteller and Wallace (1964, 82), Herdan (1964), Morton (1978), Holmes (1985), Oakes (1998) or Lebart, Salem and Berry (1998). Tirant lo Blanc, a chivalry book, is the main work in catalan literature and it was hailed to be “the best book of its kind in the world” by Cervantes in Don Quixote. Considered by writters like Vargas Llosa or Damaso Alonso to be the first modern novel in Europe, it has been translated several times into Spanish, Italian and French, with modern English translations by Rosenthal (1996) and La Fontaine (1993). The main body of this book was written between 1460 and 1465, but it was not printed until 1490. There is an intense and long lasting debate around its authorship sprouting from its first edition, where its introduction states that the whole book is the work of Martorell (1413?-1468), while at the end it is stated that the last one fourth of the book is by Galba (?-1490), after the death of Martorell. Some of the authors that support the theory of single authorship are Riquer (1990), Chiner (1993) and Badia (1993), while some of those supporting the double authorship are Riquer (1947), Coromines (1956) and Ferrando (1995). For an overview of this debate, see Riquer (1990). Neither of the two candidate authors left any text comparable to the one under study, and therefore discriminant analysis can not be used to help classify chapters by author. By using sample texts encompassing about ten percent of the book, and looking at word length and at the use of 44 conjunctions, prepositions and articles, Ginebra and Cabos (1998) detect heterogeneities that might indicate the existence of two authors. By analyzing the diversity of the vocabulary, Riba and Ginebra (2000) estimates that stylistic boundary to be near chapter 383. Following the lead of the extensive literature, this paper looks into word length, the use of the most frequent words and into the use of vowels in each chapter of the book. Given that the features selected are categorical, that leads to three contingency tables of ordered rows and therefore to three sequences of multinomial observations. Section 2 explores these sequences graphically, observing a clear shift in their distribution. Section 3 describes the problem of the estimation of a suden change-point in those sequences, in the following sections we propose various ways to estimate change-points in multinomial sequences; the method in section 4 involves fitting models for polytomous data, the one in Section 5 fits gamma models onto the sequence of Chi-square distances between each row profiles and the average profile, the one in Section 6 fits models onto the sequence of values taken by the first component of the correspondence analysis as well as onto sequences of other summary measures like the average word length. In Section 7 we fit models onto the marginal binomial sequences to identify the features that distinguish the chapters before and after that boundary. Most methods rely heavily on the use of generalized linear models
Resumo:
La voz como herramienta de trabajo de los docentes, puede afectarse por su uso prolongado, abuso o conductas de mal uso, que desencadenan limitaciones funcionales de origen laboral. Uno de los síntomas más frecuentes de quienes usan masivamente su voz con fines ocupacionales es la fatiga laríngea (FL), o cansancio vocal por debilitamiento muscular. El presente estudio quasiexperimental longitudinal pre- postest evaluó el efecto que el uso de la voz, analizando variables sociodemográficas, de salud y trabajo, los estilos de vida y los factores de riesgo ocupacionales, pero principalmente el efecto que produce el uso prolongado de la voz sobre las variables físico acústicas después de un día de trabajo, en 99 docentes de una institución de educación superior en Colombia, en comparación con trabajadores con menor uso vocal. Se aplicó un cuestionario de sintomatología vocal para controlar los sesgos, se le tomaron grabaciones pre y post jornada a cada trabajador con el software Speech Analizer® y se reportaron los cambios subjetivos tras un día de trabajo a cada trabajador. Fueron hallados cambios en las variables físico – acústicas como efecto del uso prolongado de la voz después de un día de trabajo en los dos grupos de participantes, en cuyo caso el efecto fue más significativo en los docentes que en los administrativos – no docentes. El riesgo de presentar trastornos de la voz se asoció directamente con la exposición a factores de riesgo ocupacionales y aquellos asociados a condiciones de salud y al estilo de vida de los individuos, cuyas consecuencias fueron mayores para el grupo de docentes; dado que al ser la voz su principal herramienta de trabajo, el uso fue mayor y asimismo la probabilidad de desencadenar sintomatología vocal, derivada de la fatiga laríngea. La variable de fo promedio para la fonación sostenida de la vocal /a/, que representa una sonido neutro en tonalidad o el tono habitual, mostró diferencias significativas entre grupos (p=0,048). Para este caso, el grupo de docentes registró un aumento de la fo en el postest en comparación con un cambio no significativo para el grupo de administrativos luego del uso prolongado de la voz. En consecuencia, hubo diferencias en el valor registrado para la máxima fo (p =0,025), mínima fo (p=0,011) y el rango de fo (p=0,012) en la emisión sostenida de la vocal /a/. Para el caso del grupo de administrativos, las diferencias significativas estuvieron dadas por la disminución de la fo, rango y máxima y mínima frecuencia en las tres vocales (/a/, /i/, /o/) en contraste con lo ocurrido para el grupo de docentes. En la intensidad de la voz fueron encontradas también diferencias significativas entre grupos (p=0,001) con un decrecimiento del volumen en el postest, tanto promedio como mínimo, máximo y rango de la intensidad, en la fonación sostenida de la vocal /a/ para el grupo de docentes; ninguna significancia estadística fue hallada en el grupo de administrativos para estas variables. Se demostró a través de mediciones objetivas y resultados verificables, el fenómeno de la fatiga laríngea, asociados a los efectos que se presentan tras la demanda vocal continua, discriminando el impacto, entre las variables de cargo y género.
Resumo:
This paper examines objective measures of speech production, specifically vowels. The relationship between the listener's perception of sections of the vowels with their perception of the entire vocalic utterance was examined.
Resumo:
This paper discusses a study to demonstrate improvement in vowel articulation ability by direct acoustic measurement of the format frequencies of vowels before and after training.
Resumo:
This dissertation examines the auditory-perceptual theory of speech perception and the concept and validity of perceptual target zones for vowels.
Resumo:
This study seeks to evaluate whether the DEAP, a new speech assessment that assesses vowels in addition to consonants, is as effective with children who are deaf and hard of hearing as an older, more established speech assessment, the GFTA-2.
Resumo:
Linguistic study of the placement of 'esse' and the unstressed personal pronoun in the Roman Republican inscriptions.
Resumo:
The aim of the current study was to investigate expressive affect in children with Williams syndrome ( WS) in comparison to typically developing children in an experimental task and in spontaneous speech. Fourteen children with WS, 14 typically developing children matched to the WS group for receptive language ( LA) and 15 typically developing children matched to the WS groups for chronological age ( CA) were recruited. Affect was investigated using an experimental Output Affect task from the Profiling Elements of Prosodic Systems-Child version ( PEPS-C) battery, and by measuring pitch range and vowel durations from a spontaneous speech task. The children were also rated for level of emotional involvement by phonetically naive listeners. The WS group performed similarly to the LA and CA groups on the Output Affect task. With regard to vowel durations, the WS group was no different from the LA group; however both the WS and the LA groups were found to use significantly longer vowels than the CA group. The WS group differed significantly from both control groups on their range of pitch range and was perceived as being significantly more emotionally involved than the two control groups.
Resumo:
This paper reports the pitch range and vowel duration data from a group of children with Williams syndrome (WS) in comparison with a group of typically developing children matched for chronological age (CA) and a group matched for receptive language abilities (LA). It is found that the speech of the WS group has a greater pitch range and that vowels tend to be longer in duration than in the speech of the typically developing children. These findings are in line with the impressionistic results reported by Reilly, Klima and Bellugi [17].
Resumo:
Models of normal word production are well specified about the effects of frequency of linguistic stimuli on lexical access, but are less clear regarding the same effects on later stages of word production, particularly word articulation. In aphasia, this lack of specificity of down-stream frequency effects is even more noticeable because there is relatively limited amount of data on the time course of frequency effects for this population. This study begins to fill this gap by comparing the effects of variation of word frequency (lexical, whole word) and bigram frequency (sub-lexical, within word) on word production abilities in ten normal speakers and eight mild–moderate individuals with aphasia. In an immediate repetition paradigm, participants repeated single monosyllabic words in which word frequency (high or low) was crossed with bigram frequency (high or low). Indices for mapping the time course for these effects included reaction time (RT) for linguistic processing and motor preparation, and word duration (WD) for speech motor performance (word articulation time). The results indicated that individuals with aphasia had significantly longer RT and WD compared to normal speakers. RT showed a significant main effect only for word frequency (i.e., high-frequency words had shorter RT). WD showed significant main effects of word and bigram frequency; however, contrary to our expectations, high-frequency items had longer WD. Further investigation of WD revealed that independent of the influence of word and bigram frequency, vowel type (tense or lax) had the expected effect on WD. Moreover, individuals with aphasia differed from control speakers in their ability to implement tense vowel duration, even though they could produce an appropriate distinction between tense and lax vowels. The results highlight the importance of using temporal measures to identify subtle deficits in linguistic and speech motor processing in aphasia, the crucial role of phonetic characteristics of stimuli set in studying speech production and the need for the language production models to account more explicitly for word articulation.
Resumo:
The effects of background English and Welsh speech on memory for visually-presented English words were contrasted amongst monolingual English speakers and bilingual Welsh-English speakers. Equivalent disruption to the English language task was observed amongst Welsh-speaking bilinguals from both English and Welsh speech, but English-speaking monolinguals displayed less disruption from the Welsh speech. An effect of the meaning of the background speech was therefore apparent amongst bilinguals even when the focal memory task was presented in a different language from the distracting speech. A second experiment tested only English-speaking monolinguals, using English as background speech, but varied the demands of the focal task. Participants were asked either to count the number of vowels in words visually presented for future recall, or to rate them for pleasantness, before subsequently being asked to recall the words. Greater disruption to recall was observed from meaningful background speech when participants initially rated the words for pleasantness than when they initially counted the vowels within the words. These results show that background speech is automatically analyzed for meaning, but whether the meaning of the background speech causes distraction is critically dependent upon the nature of the focal task. The data underscore the need to consider not only the nature of office noise, but also the demands and content of the work task when assessing the effects of office noise on work performance.
Resumo:
The aim of the present study was to investigate whether the saliency effect for word beginnings reported in children with Dyslexia (Marshall & van der Lely, 2009) can be found also in TD children. Thirty-four TD Italian children aged 8-10 completed two specifically designed tasks: a production task and a perception task. Both tasks used nonwords containing clusters consisting of plosive plus liquid (eg. pl). Clusters could be either in a stressed or in an unstressed syllable, and could be either in initial position (first syllable) or in medial position (second syllable). In the production task children were asked to repeat the non-words. In the perception task, the children were asked to discriminate between two nonwords differing in one phoneme belonging to a cluster by reporting whether two repetitions were the same or different. Results from the production task showed that children are more accurate in repeating stressed than unstressed syllables, but there was no difference with respect to position of the cluster. Results from the perception task showed that children performed more accurately when discriminating word initial contrasts than when discriminating word medial contrasts, especially if the cluster was unstressed. Implications of this finding for clinical assessments are discussed.
Resumo:
Accurate estimates of how soil water stress affects plant transpiration are crucial for reliable land surface model (LSM) predictions. Current LSMs generally use a water stress factor, β, dependent on soil moisture content, θ, that ranges linearly between β = 1 for unstressed vegetation and β = 0 when wilting point is reached. This paper explores the feasibility of replacing the current approach with equations that use soil water potential as their independent variable, or with a set of equations that involve hydraulic and chemical signaling, thereby ensuring feedbacks between the entire soil–root–xylem–leaf system. A comparison with the original linear θ-based water stress parameterization, and with its improved curvi-linear version, was conducted. Assessment of model suitability was focused on their ability to simulate the correct (as derived from experimental data) curve shape of relative transpiration versus fraction of transpirable soil water. We used model sensitivity analyses under progressive soil drying conditions, employing two commonly used approaches to calculate water retention and hydraulic conductivity curves. Furthermore, for each of these hydraulic parameterizations we used two different parameter sets, for 3 soil texture types; a total of 12 soil hydraulic permutations. Results showed that the resulting transpiration reduction functions (TRFs) varied considerably among the models. The fact that soil hydraulic conductivity played a major role in the model that involved hydraulic and chemical signaling led to unrealistic values of β, and hence TRF, for many soil hydraulic parameter sets. However, this model is much better equipped to simulate the behavior of different plant species. Based on these findings, we only recommend implementation of this approach into LSMs if great care with choice of soil hydraulic parameters is taken