932 resultados para Uniformity layer
Resumo:
We present measurements and numerical simulation of a-Si:H p-i-n detectors with a wide range of intrinsic layer thickness between 2 and 10 pm. Such a large active layer thickness is required in applications like elementary particle detectors or X-ray detectors. For large thickness and depending on the applied bias, we observe a sharp peak in the spectral response in the red region near 700 nm. Simulation results obtained with the program ASCA are in agreement with the measurement and permit the explanation of the experimental data. In thick samples holes recombine or are trapped before reaching the contacts, and the conduction mechanism is fully electron dominated. As a consequence, the peak position in the spectral response is located near the optical band gap of the a-Si:H i-layer. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Introduction: Paper and thin layer chromatography methods are frequently used in Classic Nuclear Medicine for the determination of radiochemical purity (RCP) on radiopharmaceutical preparations. An aliquot of the radiopharmaceutical to be tested is spotted at the origin of a chromatographic strip (stationary phase), which in turn is placed in a chromatographic chamber in order to separate and quantify radiochemical species present in the radiopharmaceutical preparation. There are several methods for the RCP measurement, based on the use of equipment as dose calibrators, well scintillation counters, radiochromatografic scanners and gamma cameras. The purpose of this study was to compare these quantification methods for the determination of RCP. Material and Methods: 99mTc-Tetrofosmin and 99mTc-HDP are the radiopharmaceuticals chosen to serve as the basis for this study. For the determination of RCP of 99mTc-Tetrofosmin we used ITLC-SG (2.5 x 10 cm) and 2-butanone (99mTc-tetrofosmin Rf = 0.55, 99mTcO4- Rf = 1.0, other labeled impurities 99mTc-RH RF = 0.0). For the determination of RCP of 99mTc-HDP, Whatman 31ET and acetone was used (99mTc-HDP Rf = 0.0, 99mTcO4- Rf = 1.0, other labeled impurities RF = 0.0). After the development of the solvent front, the strips were allowed to dry and then imaged on the gamma camera (256x256 matrix; zoom 2; LEHR parallel-hole collimator; 5-minute image) and on the radiochromatogram scanner. Then, strips were cut in Rf 0.8 in the case of 99mTc-tetrofosmin and Rf 0.5 in the case of 99mTc-HDP. The resultant pieces were smashed in an assay tube (to minimize the effect of counting geometry) and counted in the dose calibrator and in the well scintillation counter (during 1 minute). The RCP was calculated using the formula: % 99mTc-Complex = [(99mTc-Complex) / (Total amount of 99mTc-labeled species)] x 100. Statistical analysis was done using the test of hypotheses for the difference between means in independent samples. Results:The gamma camera based method demonstrated higher operator-dependency (especially concerning the drawing of the ROIs) and the measures obtained using the dose calibrator are very sensitive to the amount of activity spotted in the chromatographic strip, so the use of a minimum of 3.7 MBq activity is essential to minimize quantification errors. Radiochromatographic scanner and well scintillation counter showed concordant results and demonstrated the higher level of precision. Conclusions: Radiochromatographic scanners and well scintillation counters based methods demonstrate to be the most accurate and less operator-dependant methods.
Resumo:
Adhesively-bonded joints are extensively used in several fields of engineering. Cohesive Zone Models (CZM) have been used for the strength prediction of adhesive joints, as an add-in to Finite Element (FE) analyses that allows simulation of damage growth, by consideration of energetic principles. A useful feature of CZM is that different shapes can be developed for the cohesive laws, depending on the nature of the material or interface to be simulated, allowing an accurate strength prediction. This work studies the influence of the CZM shape (triangular, exponential or trapezoidal) used to model a thin adhesive layer in single-lap adhesive joints, for an estimation of its influence on the strength prediction under different material conditions. By performing this study, guidelines are provided on the possibility to use a CZM shape that may not be the most suited for a particular adhesive, but that may be more straightforward to use/implement and have less convergence problems (e.g. triangular shaped CZM), thus attaining the solution faster. The overall results showed that joints bonded with ductile adhesives are highly influenced by the CZM shape, and that the trapezoidal shape fits best the experimental data. Moreover, the smaller is the overlap length (LO), the greater is the influence of the CZM shape. On the other hand, the influence of the CZM shape can be neglected when using brittle adhesives, without compromising too much the accuracy of the strength predictions.
Resumo:
With the current complexity of communication protocols, implementing its layers totally in the kernel of the operating system is too cumbersome, and it does not allow use of the capabilities only available in user space processes. However, building protocols as user space processes must not impair the responsiveness of the communication. Therefore, in this paper we present a layer of a communication protocol, which, due to its complexity, was implemented in a user space process. Lower layers of the protocol are, for responsiveness issues, implemented in the kernel. This protocol was developed to support large-scale power-line communication (PLC) with timing requirements.
Resumo:
Commonly, when a weblab is developed to support remote experiments in sciences and engineering courses, a particular hardware/software architecture is implemented. However, the existence of several technological solutions to implement those architectures difficults the emergence of a standard, both at hardware and software levels. While particular solutions are adopted assuming that only qualified people may implement a weblab, the control of the physical space and the power consumption are often forgotten. Since controlling these two previous aspects may increase the quality of the weblab hosting the remote experiments, this paper proposes the useof a new layer implemented by a domotic system bus with several devices (e.g. lights, power sockets, temperature sensors, and others) able to be controlled through the Internet. We also provide a brief proof-of-concept in the form of a weblab equipped with a simple domotic system usually implemented in smart houses. The added value to the remote experiment hosted at the weblab is also identified in terms of power savings and environment conditions.
Resumo:
In this article, physical layer awareness in access, core, and metro networks is addressed, and a Physical Layer Aware Network Architecture Framework for the Future Internet is presented and discussed, as proposed within the framework of the European ICT Project 4WARD. Current limitations and shortcomings of the Internet architecture are driving research trends at a global scale toward a novel, secure, and flexible architecture. This Future Internet architecture must allow for the co-existence and cooperation of multiple networks on common platforms, through the virtualization of network resources. Possible solutions embrace a full range of technologies, from fiber backbones to wireless access networks. The virtualization of physical networking resources will enhance the possibility of handling different profiles, while providing the impression of mutual isolation. This abstraction strategy implies the use of well elaborated mechanisms in order to deal with channel impairments and requirements, in both wireless (access) and optical (core) environments.
Resumo:
River Flow 2010
Resumo:
Mestrado em Engenharia Mecânica – Especialização Gestão Industrial
Resumo:
Real-time monitoring applications may be used in a wireless sensor network (WSN) and may generate packet flows with strict quality of service requirements in terms of delay, jitter, or packet loss. When strict delays are imposed from source to destination, the packets must be delivered at the destination within an end-to-end delay (EED) hard limit in order to be considered useful. Since the WSN nodes are scarce both in processing and energy resources, it is desirable that they only transport useful data, as this contributes to enhance the overall network performance and to improve energy efficiency. In this paper, we propose a novel cross-layer admission control (CLAC) mechanism to enhance the network performance and increase energy efficiency of a WSN, by avoiding the transmission of potentially useless packets. The CLAC mechanism uses an estimation technique to preview packets EED, and decides to forward a packet only if it is expected to meet the EED deadline defined by the application, dropping it otherwise. The results obtained show that CLAC enhances the network performance by increasing the useful packet delivery ratio in high network loads and improves the energy efficiency in every network load.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Digital microfluidics (DMF) is a field which has emerged in the last decade as a re-liable and versatile tool for sensing applications based on liquid reactions. DMF allows the discrete displacement of droplets, over an array of electrodes, by the application of voltage, and also the dispensing from a reservoir, mixing, merging and splitting fluidic operations. The main drawback of these devices is due to the need of high driving volt-ages for droplet operations. In this work, alternative dielectric layers combinations were studied aiming the reduction of these driving voltages. DMF chips were designed, pro-duced and optimized according to the theory of electrowetting-on-dielectric, adopting different combinations of parylene-C and tantalum pentoxide (Ta2O5) as dielectric ma-terials, and Teflon as hydrophobic layer. With both devices’ configurations, i.e., Parylene as single dielectric, and multilayer chips combining Parylene and Ta2O5, it was possible to perform all the fluidic opera-tions in the microliter down to hundreds of nanoliters range. Multilayer chips presented significant reduction on driving voltages for droplet op-erations in silicone oil filler medium: from 70 V (parylene only) down to 30 V (parylene/Ta2O5) for dispensing; and from 50 V (parylene only) down to 15 V (parylene/Ta2O5) for movement. Peroxidase colorimetric reactions were successfully performed as proof-of-concept, using multilayer configuration devices.
Resumo:
White Color tuning is an attractive feature that Organic Light Emitting Diodes (OLEDs) offer. Up until now, there hasn’t been any report that mix both color tuning abilities with device stability. In this work, White OLEDs (W-OLEDs) based on a single RGB blend composed of a blue emitting N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) doped with a green emitting Coumarin-153 and a red emitting 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM1) dyes were produced. The final device structure was ITO/Blend/Bathocuproine (BCP)/ Tris(8-hydroxyquinolinato)aluminium (Alq3)/Al with an emission area of 0.25 cm2. The effects of the changing in DCM1’s concentration (from 0.5% to 1% wt.) allowed a tuning in the final white color resulting in devices capable of emitting a wide range of tunes – from cool to warm – while also keeping a low device complexity and a high stabilitty. Moreover, an explanation on the optoelectrical behavior of the device is presented. The best electroluminescense (EL) points toward 160 cd/m2 of brightness and 1.1 cd/A of efficiency, both prompted to being enhanced. An Impedance Spectroscopy (IS) analysis allowed to study both the effects of BCP as a Hole Blocking Layer and as an aging probe of the device. Finally, as a proof of concept, the emission was increased 9 and 64 times proving this structure can be effectively applied for general lighting.
Resumo:
Fully comprehending brain function, as the scale of neural networks, will only be possi-ble with the development of tools by micro and nanofabrication. Regarding specifically silicon microelectrodes arrays, a significant improvement in long-term performance of these implants is essential. This project aims to create a silicon microelectrode coating that provides high-quality electrical recordings, while limiting the inflammatory response of chronic implants. To this purpose, a combined chitosan and gold nanoparticles coating was produced allied with electrodes modification by electrodeposition with PEDOT/PSS in order to reduce the im-pedance at 1kHz. Using a dip-coating mechanism, the silicon probe was coated and then charac-terized both morphologically and electrochemically, with focus on the stability of post-surgery performance in anesthetized rodents. Since not only the inflammatory response analysis is vital, the electrodes recording degradation over time was also studied. The produced film presented a thickness of approximately 50 μm that led to an increase of impedance of less than 20 kΩ in average. On a 3 week chronic implant, the impedance in-crease on the coated probe was of 641 kΩ, compared with 2.4 MΩ obtained for the uncoated probe. The inflammatory response was also significantly reduced due to the biocompatible film as proved by histological tests.
Resumo:
This work documents the deposition and optimization of semiconductor thin films using chemical spray coating technique (CSC) for application on thin-film transistors (TFTs), with a low-cost, simple method. CSC setup was implemented and explored for industrial application, within Holst Centre, an R&D center in the Netherlands. As zinc oxide had already been studied within the organization, it was used as a standard material in the initial experiments, obtaining typical mobility values of 0.14 cm2/(V.s) for unpatterned TFTs. Then, oxide X layer characteristics were compared for films deposited with CSC at 40°C and spin-coating. The mobility of the spin-coated TFTs was 103 cm2/(V.s) higher, presumably due to the lack of uniformity of spray-coated film at such low temperatures. Lastly, tin sulfide, a relatively unexplored material, was deposited by CSC in order to obtain functional TFTs and explore the device’s potential for working as a phototransistor. Despite the low mobilities of the devices, a sensitive photodetector was made, showing drain current variation of nearly one order of magnitude under yellow light. CSC technique’s simplicity and versatility was confirmed, as three different semiconductors were successfully implemented into functional devices.
Resumo:
This thesis project concentrated on both the study and treatment of an early 20th century male portrait in oil from Colecção Caixa Geral de Depósitos, Lisbon, Portugal. The portrait of Januário Correia de Almeida, exhibits a tear (approximately 4.0 cm by 2.3 cm) associated with paint loss on the right upper side, where it is possible to observe an unusually thick size layer (approximately 50 microns) and an open weave mesh canvas. Size layers made from animal glue remain subject to severe dimensional changes due to changes in relative humidity (RH), thereby affecting the stability of the painting. In this case, the response to moisture of the size layer is minimal and the painting is largely uncracked with very little active flaking. This suggests that the size layer has undergone pre-treatment to render it unresponsive to moisture or water. Reconstructions based on late nineteenth century recipes using historically appropriate materials are used to explore various options for modifying the characteristics of gelatine, some of which may relate to the Portrait’s size layer. The thesis is separated into two parts: Part 1: Describes the history, condition, materials and techniques of the painting. It also details the treatment of Januário Correia de Almeida as well as the choices made and problems encountered during the treatment. Part 2: Discusses the history of commercial gelatine production, the choice of the appropriate animal source to extract the collagen to produce reconstructions of the portrait’s size layer as well as the characterization of selected reconstructions. The execution of a shallow textured infill led to one publication and one presentation: Abstract accepted for presentation and publication, International Meeting on Retouching of Cultural Heritage (RECH3), Francisco Brites, Leslie Carlyle and Raquel Marques, ‘’Hand building a Low Profile Textured Fill for a Large Loss’’.