993 resultados para Underwater light.
Resumo:
Light Transport Systems (LTS) (e.g lightpipes, fibre optics) can illuminate core areas within buildings with great potential for energy savings. However, they do not provide a clear connection to the outside like windows do, and their effects on people’s physiological and psychological health are not well understood. Furthermore, how people perceive LTS affects users’ acceptance of the device and its performance. The purpose of this research is to understand how occupants perceive and experience spaces illuminated by LTS. Two case studies of commercial buildings with LTS, located in Brisbane, Australia are assessed by qualitative (focus group interviews) and quantitative (measurement of daylight illuminances and luminance) methods. The data from interviews with occupants provide useful insight into the aspects of LTS design that are most relevant to positive perception of the luminous environment. Luminance measurements of the occupied spaces support the perception of the LTS reported by occupants: designs that create high contrast luminous environments are more likely to be perceived negatively.
Resumo:
Recently discovered intrinsically photosensitive melanopsin retinal ganglion cells contribute to the maintenance of pupil diameter, recovery and post-illumination components of the pupillary light reflex and provide the primary environmental light input to the suprachiasmatic nucleus for photoentrainment of the circadian rhythm. This review summarises recent progress in understanding intrinsically photosensitive ganglion cell histology and physiological properties in the context of their contribution to the pupillary and circadian functions and introduces a clinical framework for using the pupillary light reflex to evaluate inner retinal (intrinsically photosensitive melanopsin ganglion cell) and outer retinal (rod and cone photoreceptor) function in the detection of retinal eye disease.
Resumo:
Drivers are known to be optimistic about their risk of crash involvement, believing that they are less likely to be involved in a crash than other drivers. However, little comparative research has been conducted among other road users. In addition, optimism about crash risk is conceptualised as applying only to an individual’s assessment of his or her personal risk of crash involvement. The possibility that the self-serving nature of optimism about safety might be generalised to the group-level as a cyclist or a pedestrian, i.e., becoming group-serving rather than self-serving, has been overlooked in relation to road safety. This study analysed a subset of data collected as part of a larger research project on the visibility of pedestrians, cyclists and road workers, focusing on a set of questionnaire items administered to 406 pedestrians, 838 cyclists and 622 drivers. The items related to safety in various scenarios involving drivers, pedestrians and cyclists, allowing predictions to be derived about group differences in agreement with items based on the assumption that the results would exhibit group-serving bias. Analysis of the responses indicated that specific hypotheses about group-serving interpretations of safety and responsibility were supported in 22 of the 26 comparisons. When the nine comparisons relevant to low lighting conditions were considered separately, seven were found to be supported. The findings of the research have implications for public education and for the likely acceptance of messages which are inconsistent with current assumptions and expectations of pedestrians and cyclists. They also suggest that research into group-serving interpretations of safety, even for temporary roles rather than enduring groups, could be fruitful. Further, there is an implication that gains in safety can be made by better educating road users about the limitations of their visibility and the ramifications of this for their own road safety, particularly in low light.
Resumo:
Lumia: art/light/motion is an exciting new media exhibition presented by State Library of Queensland in partnership with Queensland-based Kuuki collective artists Priscilla Bracks and Gavin Sade. The exhibition explored contemporary life and encourages thought about the future through an extraordinary collection of hand-crafted and interactive electronic creatures and installations. The beautifully crafted new media artworks in Lumia: art/light/motion combine the bespoke with art and technology to create strange but intriguing objects. Lumia invited audiences to play, learn and then ponder the way we live and the environmental and social implications of our choices.
Resumo:
Ocean processes are dynamic and complex events that occur on multiple different spatial and temporal scales. To obtain a synoptic view of such events, ocean scientists focus on the collection of long-term time series data sets. Generally, these time series measurements are continually provided in real or near-real time by fixed sensors, e.g., buoys and moorings. In recent years, an increase in the utilization of mobile sensor platforms, e.g., Autonomous Underwater Vehicles, has been seen to enable dynamic acquisition of time series data sets. However, these mobile assets are not utilized to their full capabilities, generally only performing repeated transects or user-defined patrolling loops. Here, we provide an extension to repeated patrolling of a designated area. Our algorithms provide the ability to adapt a standard mission to increase information gain in areas of greater scientific interest. By implementing a velocity control optimization along the predefined path, we are able to increase or decrease spatiotemporal sampling resolution to satisfy the sampling requirements necessary to properly resolve an oceanic phenomenon. We present a path planning algorithm that defines a sampling path, which is optimized for repeatability. This is followed by the derivation of a velocity controller that defines how the vehicle traverses the given path. The application of these tools is motivated by an ongoing research effort to understand the oceanic region off the coast of Los Angeles, California. The computed paths are implemented with the computed velocities onto autonomous vehicles for data collection during sea trials. Results from this data collection are presented and compared for analysis of the proposed technique.
Resumo:
Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim- inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.
Resumo:
Data collection using Autonomous Underwater Vehicles (AUVs) is increasing in importance within the oceano- graphic research community. Contrary to traditional moored or static platforms, mobile sensors require intelligent planning strategies to manoeuvre through the ocean. However, the ability to navigate to high-value locations and collect data with specific scientific merit is worth the planning efforts. In this study, we examine the use of ocean model predictions to determine the locations to be visited by an AUV, and aid in planning the trajectory that the vehicle executes during the sampling mission. The objectives are: a) to provide near-real time, in situ measurements to a large-scale ocean model to increase the skill of future predictions, and b) to utilize ocean model predictions as a component in an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. We present an algorithm designed to generate paths for AUVs to track a dynamically evolving ocean feature utilizing ocean model predictions. This builds on previous work in this area by incorporating the predicted current velocities into the path planning to assist in solving the 3-D motion planning problem of steering an AUV between two selected locations. We present simulation results for tracking a fresh water plume by use of our algorithm. Additionally, we present experimental results from field trials that test the skill of the model used as well as the incorporation of the model predictions into an AUV trajectory planner. These results indicate a modest, but measurable, improvement in surfacing error when the model predictions are incorporated into the planner.
Resumo:
In this paper, we present a control strategy design technique for an autonomous underwater vehicle based on solutions to the motion planning problem derived from differential geometric methods. The motion planning problem is motivated by the practical application of surveying the hull of a ship for implications of harbor and port security. In recent years, engineers and researchers have been collaborating on automating ship hull inspections by employing autonomous vehicles. Despite the progresses made, human intervention is still necessary at this stage. To increase the functionality of these autonomous systems, we focus on developing model-based control strategies for the survey missions around challenging regions, such as the bulbous bow region of a ship. Recent advances in differential geometry have given rise to the field of geometric control theory. This has proven to be an effective framework for control strategy design for mechanical systems, and has recently been extended to applications for underwater vehicles. Advantages of geometric control theory include the exploitation of symmetries and nonlinearities inherent to the system. Here, we examine the posed inspection problem from a path planning viewpoint, applying recently developed techniques from the field of differential geometric control theory to design the control strategies that steer the vehicle along the prescribed path. Three potential scenarios for surveying a ship?s bulbous bow region are motivated for path planning applications. For each scenario, we compute the control strategy and implement it onto a test-bed vehicle. Experimental results are analyzed and compared with theoretical predictions.
Resumo:
Designing trajectories for a submerged rigid body motivates this paper. Two approaches are addressed: the time optimal approach and the motion planning ap- proach using concatenation of kinematic motions. We focus on the structure of singular extremals and their relation to the existence of rank-one kinematic reduc- tions; thereby linking the optimization problem to the inherent geometric frame- work. Using these kinematic reductions, we provide a solution to the motion plan- ning problem in the under-actuated scenario, or equivalently, in the case of actuator failures. We finish the paper comparing a time optimal trajectory to one formed by concatenation of pure motions.
Resumo:
In this paper, we concern ourselves with finding a control strategy that minimizes energy consumption along a trajectory connecting two given configurations. We develop an algorithm, based on our previous work with the time optimal problem, which provides implementable control strategies that are energy efficient. We find an interesting correlation between the duration of these trajectories and the optimal duration. We present the algorithm, control strategy and experimental results from our test-bed vehicle.
Resumo:
An autonomous underwater vehicle (AUV) is expected to operate in an ocean in the presence of poorly known disturbance forces and moments. The uncertainties of the environment makes it difficult to apply open-loop control scheme for the motion planning of the vehicle. The objective of this paper is to develop a robust feedback trajectory tracking control scheme for an AUV that can track a prescribed trajectory amidst such disturbances. We solve a general problem of feedback trajectory tracking of an AUV in SE(3). The feedback control scheme is derived using Lyapunov-type analysis. The results obtained from numerical simulations confirm the asymptotic tracking properties of the feedback control law. We apply the feedback control scheme to different mission scenarios, with the disturbances being initial errors in the state of the AUV.
Resumo:
Trajectory design for Autonomous Underwater Vehicles (AUVs) is of great importance to the oceanographic research community. Intelligent planning is required to maneuver a vehicle to high-valued locations for data collection. We consider the use of ocean model predictions to determine the locations to be visited by an AUV, which then provides near-real time, in situ measurements back to the model to increase the skill of future predictions. The motion planning problem of steering the vehicle between the computed waypoints is not considered here. Our focus is on the algorithm to determine relevant points of interest for a chosen oceanographic feature. This represents a first approach to an end to end autonomous prediction and tasking system for aquatic, mobile sensor networks. We design a sampling plan and present experimental results with AUV retasking in the Southern California Bight (SCB) off the coast of Los Angeles.
Resumo:
The main focus of this paper is on the motion planning problem for an under-actuated, submerged, Omni-directional autonomous vehicle. Underactuation is extremely important to consider in ocean research and exploration. Battery failure, actuator malfunction and electronic shorts are a few reasons that may cause the vehicle to lose direct control of one or more degrees-of-freedom. Underactuation is also critical to understand when designing vehicles for specific tasks, such as torpedo-shaped vehicles. An under-actuated vehicle is less controllable, and hence, the motion planning problem is more difficult. Here, we present techniques based on geometric control to provide solutions to the under-actuated motion planning problem for a submerged underwater vehicle. Our results are validated with experiments.
Resumo:
-