984 resultados para UML (INFORMATICA)
Resumo:
Il potenziale che il Web ha raggiunto in termini di accessibilità, gestione e flessibilità, ha spinto i più svariati settori ad approcciarsi ad esso e ad adottarlo all’interno delle proprie organizzazioni. É stato quindi necessario applicare alle tradizionali applicazioni web, nuove soluzioni al fine di integrare gli elementi di workflow management con il modello dei dati di navigazione e di presentazione. In questo lavoro di tesi, si affrontano gli aspetti legati ai processi di business, con riferimento alla progettazione e allo sviluppo di applicazioni Web. Verranno introdotti standard di modellazione come UML e BPMN per poi descrivere soluzioni e casi di studio esistenti. Nella seconda parte dell'elaborato invece, verranno presentate le tecnologie utilizzate per il design e lo sviluppo di un framework, a supporto delle process-aware Web applications.
Resumo:
Open Source Communities and content-oriented projects (Creative Commons etc.) have reached a new level of economic and cultural significance in some areas of the Internet ecosystem. These communities have developed their own set of legal rules covering licensing issues, intellectual property management, project governance rules etc. Typical Open Source licenses and project rules are written without any reference to national law. This paper considers the question whether these license contracts and other legal rules are to be qualified as a lex mercatoria (or lex informatica) of these communities.
Resumo:
UML is widely accepted as the standard for representing the various software artifacts generated by a development process. For this reason, there have been attempts to use this language to represent the software architecture of systems as well. Unfortunately, these attempts have ended in the same representations (boxes and lines) already criticized by the software architecture community.In this work we propose an extension to the UML metamodel that is able to represent the syntactics and semantics of the C3 architectural style. This style is derived from C2. The modifications to define C3 are described in section 4. This proposal is innovative regarding UML extensions for software architectures, since previous proposals where based on light extensions to the UML meta-model, while we propose a heavyweight extension of the metamodel. On the other hand, this proposal is less ambitious than previous proposals, since we do not want to represent in UML any architectural style, but only one: C3.
Resumo:
ML 1.4 is widely accepted as the standard for representing the various software artifacts generated by a development process. For this reason, there have been attempts to use this language to represent the software architec- ture of systems as well. Unfortunately, these attempts have ended in representa- tions (boxes and lines) already criticized by the software architecture commu- nity. Recently, OMG has published a draft that will constitute the future UML 2.0 specification. In this paper we compare the capacities of UML 1.4 and UML 2.0 to describe software architectures. In particular, we study extensions of both UML versions to describe the static view of the C3 architectural style (a simplification of the C2 style). One of the results of this study is the difficulties found when using the UML 2.0 metamodel to describe the concept of connector in a software architecture.
Resumo:
We discuss how integrity consistency constraints between different UML models can be precisely defined at a language level. In doing so, we introduce a formal object-oriented metamodeling approach. In the approach, integrity consistency constraints between UML models are defined in terms of invariants of the UML model elements used to define the models at the language-level. Adopting a formal approach, constraints are formally defined using Object-Z. We demonstrate how integrity consistency constraints for UML models can be precisely defined at the language-level and once completed, the formal description of the consistency constraints will be a precise reference of checking consistency of UML models as well as for tool development.
Resumo:
Three important goals in describing software design patterns are: generality, precision, and understandability. To address these goals, this paper presents an integrated approach to specifying patterns using Object-Z and UML. To achieve the generality goal, we adopt a role-based metamodeling approach to define patterns. With this approach, each pattern is defined as a pattern role model. To achieve precision, we formalize role concepts using Object-Z (a role metamodel) and use these concepts to define patterns (pattern role models). To achieve understandability, we represent the role metamodel and pattern role models visually using UML. Our pattern role models provide a precise basis for pattern-based model transformations or refactoring approaches.
Resumo:
Starting with a UML specification that captures the underlying functionality of some given Java-based concurrent system, we describe a systematic way to construct, from this specification, test sequences for validating an implementation of the system. The approach is to first extend the specification to create UML state machines that directly address those aspects of the system we wish to test. To be specific, the extended UML state machines can capture state information about the number of waiting threads or the number of threads blocked on a given object. Using the SAL model checker we can generate from the extended UML state machines sequences that cover all the various possibilities of events and states. These sequences can then be directly transformed into test sequences suitable for input into a testing tool such as ConAn. As an illustration, the methodology is applied to generate sequences for testing a Java implementation of the producer-consumer system. © 2005 IEEE
Resumo:
A significant problem with currently suggested approaches for transforming between models in different languages is that the transformation is often described imprecisely, with the result that the overall transformation task may be imprecise, incomplete and inconsistent. This paper presents a formal metamodeling approach for transforming between UML and Object-Z. In the paper, the two languages are defined in terms of their formal metamodels, and a systematic transformation between the models is provided at the meta-level in terms of formal mapping functions. As a consequence, we can provide a precise, consistent and complete transformation between them.