998 resultados para Tuberculosis activity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To investigate the presence of mutations in the pncA gene in 31 pyrazinamide-resistant Mycobacterium tuberculosis and 5 susceptible strains. MICs and pyrazinamidase (PZase) activity were also determined.Methods: All 36 M. tuberculosis clinical isolates were genotyped by mycobacterial interspersed repetitive units (MIRUs) and most were also typed by spoligotyping. The MIC value necessary to inhibit 99% of the resistant mycobacterial isolates was determined by microplate Alamar Blue assay (MABA) and by Lowenstein-Jensen assay (LJA). The PZase activity was measured by pyrazinamide deamination to pyrazinoic acid and ammonia, and the entire pncA sequence including the 410 by upstream from the start codon was determined by DNA sequencing of purified PCR products.Results: of the 31 isolates resistant to pyrazinamide, 26 (83.9%) showed at least one mutation in the pncA gene or in its putative regulatory region: Among the 22 different mutations detected in the pncA gene and in its regulatory region, 9 (40.9%) mutations (consisting of six substitutions, two insertions and one deletion) have not been described in previous studies. Three pyrazinamide-resistant isolates, confirmed by MIC varying from 800 to 1600 mg/L, carried the wild-type pncA sequence and retained PZase activity.Conclusions: These results contribute to the knowledge of the molecular mechanism of pyrazinamide resistance in Brazil and also expand the profile of pncA mutations worldwide. The MABA was successfully used to determine the MICs of pyrazinamide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacteria, fungi and plants can convert carbohydrate and phosphoenolpyruvate into chorismate, which is the precursor of various aromatic compounds. The seven enzymes of the shikimate pathway are responsible for this conversion. Shikimate kinase (SK) is the fifth enzyme in this pathway and converts shikimate to shikimate-3-phosphate. In this work, the conformational changes that occur on binding of shikimate, magnesium and chloride ions to SK from Mycobacterium tuberculosis (MtSK) are described. It was observed that both ions and shikimate influence the conformation of residues of the active site of MtSK. Magnesium influences the conformation of the shikimate hydroxyl groups and the position of the side chains of some of the residues of the active site. Chloride seems to influence the affinity of ADP and its position in the active site and the opening length of the LID domain. Shikimate binding causes a closing of the LID domain and also seems to influence the crystallographic packing of SK. The results shown here could be useful for understanding the catalytic mechanism of SK and the role of ions in the activity of this protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the search for new therapeutic tools against tuberculosis two novel iron complexes, [Fe(L-H)3], with 3-aminoquinoxaline-2-carbonitrile N(1),N(4)-dioxide derivatives (L) as ligands, were synthesized, characterized by a combination of techniques, and in vitro evaluated. Results were compared with those previously reported for two analogous iron complexes of other ligands of the same family of quinoxaline derivatives. In addition, the complexes were studied by cyclic voltammetry and EPR spectroscopy. Cyclic voltammograms of the iron compounds showed several cathodic processes which were attributed to the reduction of the metal center (Fe(III)/Fe(II)) and the coordinated ligand. EPR signals were characteristic of magnetically isolated high-spin Fe(III) in a rhombic environment and arise from transitions between m(s) = +/- 1/2 (geff-9) or m(s) = +/- 3/2 (g(eff)similar to 4.3) states. Mossbauer experiments showed hyperfine parameters that are typical of high-spin Fe(III) ions in a not too distorted environment. The novel complexes showed in vitro growth inhibitory activity on Mycobacterium tuberculosis H(37)Rv (ATCC 27294), together with very low unspecific cytotoxicity on eukaryotic cells (cultured murine cell line J774). Both complexes showed higher inhibitory effects on M. tuberculosis than the "second-line" therapeutic drugs. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, there are 8 million new cases and 2 million deaths annually from tuberculosis, and it is expected that a total of 225 million new cases and 79 million deaths will occur between 1998 and 2030. The reemergence of tuberculosis as a public health threat, the high susceptibility of HIV-infected persons, and the proliferation of multi-drug-resistant strains have created a need to develop new antimycobacterial agents. The existence of homologues to the shikimate pathway enzymes has been predicted by the determination of the genome sequence of Mycobacterium tuberculosis. We have previously reported the cloning and overexpression of M. tuberculosis aro A-encoded EPSP synthase in both soluble and active forms, without IPTG induction. Here, we describe the purification of M. tuberculosis EPSP synthase (mtEPSPS) expressed in Escherichia coli BL21(DE3) host cells. Purification of mtEPSPS was achieved by a one-step purification protocol using an anion exchange column. The activity of the homogeneous enzyme was measured by a coupled assay using purified shikimate kinase and purine nucleoside phosphorylase proteins. A total of 53 mg of homogeneous enzyme could be obtained from 1 L of LB cell culture, with a specific activity value of approximately 18 U mg-1. The results presented here provide protein in quantities necessary for structural and kinetic studies, which are currently underway in our laboratory. © 2002 Elsevier Science (USA). All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of mortality due to a bacterial pathogen. According to the 2004 Global TB Control Report of the World Health Organization, there are 300,000 new cases per year of multi-drug resistant strains (MDR-TB), defined as resistant to isoniazid and rifampicin, and 79% of MDR-TB cases are now super strains, resistant to at least three of the four main drugs used to treat TB. Thus there is a need for the development of effective new agents to treat TB. The shikimate pathway is an attractive target for the development of antimycobacterial agents because it has been shown to be essential for the viability of M. tuberculosis, but absent from mammals. The M. tuberculosis aroG-encoded 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (mtDAHPS) catalyzes the first committed step in this pathway. Here we describe the PCR amplification, cloning, and sequencing of aroG structural gene from M. tuberculosis H37Rv. The expression of recombinant mtDAHPS protein in the soluble form was obtained in Escherichia coli Rosetta-gami (DE3) host cells without IPTG induction. An approximately threefold purification protocol yielded homogeneous enzyme with a specific activity value of 0.47 U mg-1 under the experimental conditions used. Gel filtration chromatography results demonstrate that recombinant mtDAHPS is a pentamer in solution. The availability of homogeneous mtDAHPS will allow structural and kinetics studies to be performed aiming at antitubercular agents development. © 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuberculosis (TB) is a very serious problem worldwide and the increasing number of multiple drugs resistant TB cases makes the search for new anti-TB drugs an urgent need. Indigenous knowledge about the use of native plants to treat illnesses has contributed to the discovery of new medicines. In this study, the antimycobacterial activity of seven medicinal drinks was assessed: Ananas sativus (hydroalcoholic fruit extract), Aristolochia triangularis (aqueous and hydroalcoholic leaf, root and stem extracts), Bromelia antiacantha (hydroalcoholic fruit extract), Stryphnodendron adstringens (hydroalcoholic bark extract), Tabebuia ovellanedae (hydroalcoholic bark extract), Vernonia polyanthes (hydroalcoholic root extract), all used by the Vanuíre indigenous community in the treatment of respiratory diseases. The activity was evaluated by using a time-to-kill assay, in which Mycobacterium tuberculosis H37Rv was cultured on Löwenstein-Jensen medium, after thirty minutes, one, three, six, twelve and twenty-four hours contact of the bacteria with each drink. Within half to one hour contact, the hydroalcoholic drinks of A. triangularis, S. adstringens, T. ovellanedae and V. polyanthes reduced the bacterial growth by 2 orders of magnitude in CFU/mL, and all bacterial growth was absent after three hours contact. In contrast, no mycobactericidal effect was detected in the aqueous extract of A. triangularis or in the hydroalcoholic beverages of A. sativus and B. antiacantha, even after twenty-four hours contact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB). The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS) is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF) sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. Results. In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS), molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMN ox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. Conclusion. This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and proton inventory results indicate that proton transfer from solvent partially limits the rate of FMN reduction and that a single proton transfer gives rise to the observed solvent isotope effect. Multiple isotope effects suggest a stepwise mechanism for the reduction of FMNox. The results on enzyme kinetics described here provide evidence for the mode of action of MtCS and should thus pave the way for the rational design of antitubercular agents. © 2008 Ely et al; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis and characterization of ruthenium compounds of the type [RuCl2(P)2(N-N)] [(P)2 = (PPh3) 2, dppb = 1,4-bis(diphenylphosphino)butano; dppp = 1,3-bis(diphenylphosphino)propane; N-N = 5,5′-dimethyl-2,2′dipyridyl (5,5′-mebipy) or 4,4′-dimethyl-2,2′dipyridyl (4,4′-mebipy)] are described. The complexes were characterized using elemental analysis, UV-Vis and infrared spectroscopies, cyclic voltammetry, and X-ray crystallography. In vitro evaluation of the complexes, using the MTT methodology, revealed their cytotoxic activities in a range of 5.4-15.7 μM against the MDA-MB-231 breast tumor cells and showed that, in this case, they are more active than the reference metallodrug cisplatin. The in vitro antimycobacterial activities of the complexes had their Minimum Inhibitory Concentration (MIC) for MTB cell growth measured, by the REMA method. The MICs for these complexes were found to be between 12.5 and 25.0 μg/mL. The results are comparable with the second line drug cycloserine (MIC = 12.5-50.0 μg/mL), commonly used in the treatment of TB. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, the research for new and better antimicrobial compounds is an important field due to the increase of immunocompromised patients, the use of invasive medical procedures and extensive surgeries, among others, that can affect the incidence of infections. Another big problem associated is the occurrence of drug-resistant microbial strains that impels a ceaseless search for new antimicrobial agents. In this context, a series of heterocyclic- sulfonamide complexes with Co(II) was synthesized and characterized with the aim of obtaining new antimicrobial compounds. The structural characterization was performed using different spectroscopic methods (UV-Vis, IR, and EPR). In spite of the fact that the general stoichiometry for all the complexes was Co(sulfonamide)2·nH2O, the coordination atoms were different depending on the coordinated sulfonamide. The crystal structure of [Co(sulfamethoxazole)2(H2O)2]·H 2O was obtained by X-ray diffraction showing that Co(II) is in a slightly tetragonal distorted octahedron where sulfamethoxazole molecules act as a head-to-tail bridges between two cobalt atoms, forming polymeric chains. Besides, the activity against Mycobacterium tuberculosis, one of the responsible for tuberculosis, and the cytotoxicity on J774A.1 macrophage cells were evaluated. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuberculosis remains as one of the main cause of mortality worldwide due to a single infectious agent, Mycobacterium tuberculosis. The aroK-encoded M. tuberculosis Shikimate Kinase (MtSK), shown to be essential for survival of bacilli, catalyzes the phosphoryl transfer from ATP to the carbon-3 hydroxyl group of shikimate (SKH), yielding shikimate-3-phosphate and ADP. Here we present purification to homogeneity, and oligomeric state determination of recombinant MtSK. Biochemical and biophysical data suggest that the chemical reaction catalyzed by monomeric MtSK follows a rapid-equilibrium random order of substrate binding, and ordered product release. Isothermal titration calorimetry (ITC) for binding of ligands to MtSK provided thermodynamic signatures of non-covalent interactions to each process. A comparison of steady-state kinetics parameters and equilibrium dissociation constant value determined by ITC showed that ATP binding does not increase the affinity of MtSK for SKH. We suggest that MtSK would more appropriately be described as an aroL-encoded type II shikimate kinase. Our manuscript also gives thermodynamic description of SKH binding to MtSK and data for the number of protons exchanged during this bimolecular interaction. The negative value for the change in constant pressure heat capacity (ΔCp) and molecular homology model building suggest a pronounced contribution of desolvation of non-polar groups upon binary complex formation. Thermodynamic parameters were deconvoluted into hydrophobic and vibrational contributions upon MtSK:SKH binary complex formation. Data for the number of protons exchanged during this bimolecular interaction are interpreted in light of a structural model to try to propose the likely amino acid side chains that are the proton donors to bulk solvent following MtSK:SKH complex formation. © 2013 Rosado et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rifampicin, discovered more than 50 years ago, represents the last novel class of antibiotics introduced for the first-line treatment of tuberculosis. Drugs in this class form part of a 6-month regimen that is ineffective against MDR and XDR TB, and incompatible with many antiretroviral drugs. Investments in R&D strategies have increased substantially in the last decades. However, the number of new drugs approved by drug regulatory agencies worldwide does not increase correspondingly. Ruthenium complexes (SCAR) have been tested in our laboratory and showed promising activity against Mycobacterium tuberculosis. These complexes showed up to 150 times higher activity against MTB than its organic molecule without the metal (free ligand), with low cytotoxicity and high selectivity. In this study, promising results inspired us to seek a better understanding of the biological activity of these complexes. The in vitro biological results obtained with the SCAR compounds were extremely promising, comparable to or better than those for first-line drugs and drugs in development. Moreover, SCAR 1 and 4, which presented low acute toxicity, were assessed by Ames test, and results demonstrated absence of mutagenicity. © 2013 Pavan et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)