976 resultados para Trees -- Water requirements -- Queensland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evapotranspiration (ET) is a complex process in the hydrological cycle that influences the quantity of runoff and thus the irrigation water requirements. Numerous methods have been developed to estimate potential evapotranspiration (PET). Unfortunately, most of the reliable PET methods are parameter rich models and therefore, not feasible for application in data scarce regions. On the other hand, accuracy and reliability of simple PET models vary widely according to regional climate conditions. The objective of the present study was to evaluate the performance of three temperature-based and three radiation-based simple ET methods in estimating historical ET and projecting future ET at Muda Irrigation Scheme at Kedah, Malaysia. The performance was measured by comparing those methods with the parameter intensive Penman-Monteith Method. It was found that radiation based methods gave better performance compared to temperature-based methods in estimation of ET in the study area. Future ET simulated from projected climate data obtained through statistical downscaling technique also showed that radiation-based methods can project closer ET values to that projected by Penman-Monteith Method. It is expected that the study will guide in selecting suitable methods for estimating and projecting ET in accordance to availability of meteorological data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Worldwide water managers are increasingly challenged to allocate sufficient and affordable water supplies to different water use sectors without further degrading river ecosystems and their valuable services to mankind. Since 1950 human population almost tripled, water abstractions increased by a factor of four, and the number of large dam constructions is about eight times higher today. From a hydrological perspective, the alteration of river flows (temporally and spatially) is one of the main consequences of global change and further impairments can be expected given growing population pressure and projected climate change. Implications have been addressed in numerous hydrological studies, but with a clear focus on human water demands. Ecological water requirements have often been neglected or addressed in a very simplistic manner, particularly from the large-scale perspective. With his PhD thesis, Christof Schneider took up the challenge to assess direct (dam operation and water abstraction) and indirect (climate change) impacts of human activities on river flow regimes and evaluate the consequences for river ecosystems by using a modeling approach. The global hydrology model WaterGAP3 (developed at CESR) was applied and further developed within this thesis to carry out several model experiments and assess anthropogenic river flow regime modifications and their effects on river ecosystems. To address the complexity of ecological water requirements the assessment is based on three main ideas: (i) the natural flow paradigm, (ii) the perception that different flows have different ecological functions, and (iii) the flood pulse concept. The thesis shows that WaterGAP3 performs well in representing ecologically relevant flow characteristics on a daily time step, and therefore justifies its application within this research field. For the first time a methodology was established to estimate bankfull flow on a 5 by 5 arc minute grid cell raster globally, which is a key parameter in eFlow assessments as it marks the point where rivers hydraulically connect to adjacent floodplains. Management of dams and water consumption pose a risk to floodplains and riparian wetlands as flood volumes are significantly reduced. The thesis highlights that almost one-third of 93 selected Ramsar sites are seriously affected by modified inundation patterns today, and in the future, inundation patterns are very likely to be further impaired as a result of new major dam initiatives and climate change. Global warming has been identified as a major threat to river flow regimes as rising temperatures, declining snow cover, changing precipitation patterns and increasing climate variability are expected to seriously modify river flow regimes in the future. Flow regimes in all climate zones will be affected, in particular the polar zone (Northern Scandinavia) with higher river flows during the year and higher flood peaks in spring. On the other side, river flows in the Mediterranean are likely to be even more intermittent in the future because of strong reductions in mean summer precipitation as well as a decrease in winter precipitation, leading to an increasing number of zero flow events creating isolated pools along the river and transitions from lotic to lentic waters. As a result, strong impacts on river ecosystem integrity can be expected. Already today, large amounts of water are withdrawn in this region for agricultural irrigation and climate change is likely to exacerbate the current situation of water shortages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os vários estudos sobre a importância da água na fisiologia humana têm demonstrado que a quantidade de água presente nos alimentos e a produzida por via metabólica, não são suficientes para suprir as necessidades diárias deste nutriente. A água ingerida em função do reflexo da sede ou por vontade do próprio varia entre os indivíduos e, ao contrário de outros nutrientes fundamentais, não existe para a água uma definição clara sobre as necessidades diárias. Este facto pode ser parcialmente explicado pelo conjunto altamente sensível de adaptações neurofisiológicas que se fazem sentir com vista a manter a osmolaridade e a hidratação do organismo. Afim de avaliar a quantidade total de água consumida, os voluntários foram questionados sobre a quantidade de água/infusões/chás que consumiam diariamente. Com base num inquérito de frequência alimentar foi possível calcular o valor de 2,5l/dia consumo/conteúdo total de água da dieta da população em estudo. Os dados revelados pelo presente estudo, estão de acordo, com a literatura publicada, justificando o interesse no aprofundamento do tema, de modo a contribuir para o conhecimento sobre a importância da água no contexto dos nossos hábitos alimentares, na fisiologia normal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is a commentary on several research studies conducted on the prospects for aerobic rice production systems that aim at reducing the demand for irrigation water which in certain major rice producing areas of the world is becoming increasingly scarce. The research studies considered, as reported in published articles mainly under the aegis of the International Rice Research Institute (IRRI), have a narrow scope in that they test only 3 or 4 rice varieties under different soil moisture treatments obtained with controlled irrigation, but with other agronomic factors of production held as constant. Consequently, these studies do not permit an assessment of the interactions among agronomic factors that will be of critical significance to the performance of any production system. Varying the production factor of "water" will seriously affect also the levels of the other factors required to optimise the performance of a production system. The major weakness in the studies analysed in this article originates from not taking account of the interactions between experimental and non-experimental factors involved in the comparisons between different production systems. This applies to the experimental field design used for the research studies as well as to the subsequent statistical analyses of the results. The existence of such interactions is a serious complicating element that makes meaningful comparisons between different crop production systems difficult. Consequently, the data and conclusions drawn from such research readily become biased towards proposing standardised solutions for possible introduction to farmers through a linear technology transfer process. Yet, the variability and diversity encountered in the real-world farming environment demand more flexible solutions and approaches in the dissemination of knowledge-intensive production practices through "experiential learning" types of processes, such as those employed by farmer field schools. This article illustrates, based on expertise of the 'system of rice intensification' (SRI), that several cost-effective and environment-friendly agronomic solutions to reduce the demand for irrigation water, other than the asserted need for the introduction of new cultivars, are feasible. Further, these agronomic Solutions can offer immediate benefits of reduced water requirements and increased net returns that Would be readily accessible to a wide range of rice producers, particularly the resource poor smallholders. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ln Australia in the 1950s, the average house size was approximately 100 mz. By 2008, the average size of a new house had risen to approximately 238 mz i.e. an increase of nearly 140%. Over the same period, occupancy levels have fallen by nearly one third from 3.7 to 2.5 persons per household. The aim of this paper is to contrast the total and per capita resource demand (direct and embodied energy, water and materials) for two houses typical of their respective era and draw some conclusions from the results. Using the software Autodesk Revit Architecture and drawings for typical 1950 and 2009 houses, the material quantities for these dwellings have been determined. Using known coefficients, the embodied energy and water in the materials have been calculated. Operating energy requirements have been calculated using NatHERS estimates. Water requirements have been calculated using historical and current water data. The greenhouse gas emissions associated with the resource use have also been calculated using established coefficients. Results are compared on a per capita basis. The research found that although the energy to operate the modern house and annual water use had fallen, the embodied energy and associated greenhouse gas emissions from material use had risen significantly. This was driven by the size of the house and the change in construction practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wet textile colouration has the highest environmental impact of all textile processing steps. It consumes water, chemicals and energy and produces liquid, heat and gas waste streams. Liquid effluent streams are often quite toxic to the environment. There are a number of different dyeing processes, normally fibre type specific, and each has a different impact on the environment. This research investigated the energy, chemical and water requirements for the exhaust colouration of cotton, wool, polyester and nylon. The research investigated the liquid waste biological and chemical oxygen demand, salinity, pH and colour along with the energy required for drying after colouration. Polyester fibres had the lowest impact on the environment with lowest water and energy consumption in dyeing, good dye bath exhaustion, the lowest salinity levels in their effluent, relatively neutral pH effluent and low energy in drying. The wool and nylon had similar dye bath requirements and outputs however the nylon could be dyed at far lower liquor ratios and hence provided better energy and water use figures. The cotton and wool required high energy consumption in drying after colouration. Cotton performed poorly in all of the measured parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wet textile colouration has the highest environmental impact of all textile processing steps. It consumes water, chemicals and energy and produces liquid, heat and gas waste streams. Liquid effluent streams are often quite toxic to the environment. There are a number of different dyeing processes, normally fibre type specific, and each has a different impact on the environment. This research investigated the energy, chemical and water requirements for the exhaust colouration of cotton, wool, polyester and nylon. The research investigated the liquid waste biological oxygen demand, total organic carbon dissolved solids, suspended solids, pH and colour along with the energy required for drying after colouration. Polyester fibres had the lowest impact on the environment with low water and energy consumption in dyeing, good dye bath exhaustion, the lowest dissolved solids levels in waste water, relatively neutral pH effluent and low energy in drying. The wool and nylon had similar dyebath requirements and outputs however the nylon could be dyed at far lower liquor ratios and hence provided better energy and water use figures. Cotton performed badly in all of the measured parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report provides a consistent and systematic approach to the determination of environmental water requirements for estuaries in Victoria.

Victoria’s limited water resources are subject to competing demands. These demands, including town water supplies and irrigation requirements, often deplete the flow entering estuaries and put their environmental values at risk.

The Estuary Environmental Flows Assessment Methodology (EEFAM) is a standard methodology which can be applied in a consistent manner across all Victorian estuaries, according to their priority. It is not anticipated that this method would be used for the Gippsland Lakes or Port Phillip or Western Port Bay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report sets out a method to determine the environmental water requirements of estuaries in Victoria. The estuary environmental flows assessment method (EEFAM) is a standard methodology which can be applied consistently across Victorian estuaries.
The primary objective of EEFAM is to define a flow regime to maintain or enhance the ecological health of an estuary. The method is used to inform Victorian water resource planning processes.
The output of EEFAM is a recommended flow regime for estuaries. This recommendation is developed from the known dependence of the estuary’s flora, fauna, biogeochemical and geomorphological features on the flow regime. EEFAM is an evidence-based methodology. This bottom-up or ‘building block’ approach conforms to the asset-based approach of the Victorian River Health Strategy and regional river health strategies.
EEFAM is based on and expands on FLOWS, the Victorian method for determining environmental water requirements in rivers. The list of tasks has been modified and re-ordered in EEFAM to reflect environmental and management issues specific to estuaries. EEFAM and FLOWS can be applied
simultaneously to a river and its estuary as part of a whole-of-system approach to environmental flow requirements. Like the FLOWS method, EEFAM is modular, and additional components can be readily incorporated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flight range of migrating birds depends crucially on the amount of fuel stored by the bird prior to migration or taken up en route at stop-over sites. However, an increase in body mass is associated with an increase in energetic costs, counteracting the benefit of fuel stores. Water imbalance, occurring when water loss exceeds metabolic water production, may constitute another less well recognised problem limiting flight range. The main route of water loss during flight is via the lungs; the rate of loss depends on ambient temperature, relative humidity and ventilatory flow and increases with altitude. Metabolite production results in an increased plasma osmolality, also endangering the proper functioning of the organism during flight. Energetic constraints and water-balance problems may interact in determining several aspects of flight behaviour, such as altitude of flight, mode of flight, lap distance and stop-over duration. To circumvent energetic and water-balance problems, a bird could migrate in short hops instead of long leaps if crossing of large ecological barriers can be avoided. However, although necessitating larger fuel stores and being more expensive, migration by long leaps may sometimes be faster than by short hops. Time constraints are also an important factor in explaining why soaring, which conserves energy and water, occurs exclusively in very large species: small birds can soar at low speeds only. Good navigational skills involving accurate orientation and assessment of altitude and air and ground speed assist in avoiding physiological stress during migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of petroleum is frequently accomplished with great volumes of water, that it is carried of the underground with the oil. It is a challenge of the present century the development of technologies that allow the use of waste water for purposes that consume great amounts of water and don't demand as rigid as the one of the drinking water requirements. The solar distillation has been configuring as an alternative of clean technology for desalination of brine and saline. Besides causing the minimum possible damage to the environment, it takes advantage of an abundant and free energy source: the solar energy. That study aims to develop a Solar Distillator for treatment of the produced water of the oil wells, to obtain an efluent to use in agriculture and vapor generation. The methodology for collection, conservation and analysis of the physical-chemical parameters obeyed the norms in APHA (1995). The sampling was of the composed type. Experiments were accomplished in the solar distillation pilot and simulation in thermostatic bathing. The operation was in batch system and for periods of 4, 6 and 12 h. The developed Distillator is of the type simple effect of two waters. It was still tested two inclination angles for covering; 20º and 45º. The Distillator presented minimum of 2,85 L/m2d revenues and maximum of 7,14 L/m2d. The removals of salts were great than 98%. The removal of TOC in the simulation was great than 90%. In agreement with the data of energy and mass balance, it was verified that the developed solar Distillator presented compatible revenues with those found in literature for similar types. It can be inferred that the obtained distilled water assists to the requirements CONAMA in almost all the points and could be used for irrigation of cultures such as cotton and mamona. As the distilled water has characteristics of fresh water it can be used in the generation of vapor

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the experimental area of the Department of Environmental Sciences (21.85° S; 48.43° W; 786 m), in the School of Agronomical Sciences, UNESP, Botucatu, SP, an experiment was carried out using peanut (Arachis hypogaea L), cv. IAC-TATU-ST, to quantify the crop daily water requirements. During the peanut crop cycle, the environmental variables, such as rainfall, air temperature, air relative humidity, soil matric potential, soil heat flux and radiation balance, have been registered continually. These measurements were used to calculate the daily crop evapotranspiration, by the Bowen ratio method. The water replacement required by the peanut crop was done the dripping irrigation system, oriented by a dynamic agrometeorological model that computes the entrance and exit of water in the soil. During the peanut crop cycle, 9.0 mm of water was used from sowing to emergence; 67.0 mm of water, in the growth stage; 166.0 mm, in the flowering stage; 124.0 mm in the final stage and 46.0 mm from physiological maturity to harvest. Oot of 412.0 mm of the total consumption, 246.0 mm of water was supplied by irrigation and 166.0 mm by the rain. The grain yield was 3.15 t ha-1 for 15% of humidity, and the water use efficiency was 0.764 kg m-3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA