984 resultados para Transition rates
Resumo:
TiO2 single layers and TiO2/SiO2 high reflectors (HR) are prepared by electron beam evaporation at different TiO2 deposition rates. It is found that the changes of properties of TiO2 films with the increase of rate, such as the increase of refractive index and extinction coefficient and the decrease of physical thickness, lead to the spectrum shift and reflectivity bandwidth broadening of HR together with the increase of absorption and decrease of laser-induced damage threshold. The damages are found of different morphologies: a shallow pit to a seriously delaminated and deep crater, and the different amorphous-to-anatase-to-rutile phase transition processes detected by Raman study. The frequency shift of Raman vibration mode correlates with the strain in. film. Energy dispersive X-ray analysis reveals that impurities and non-stoichiometric defects are two absorption initiations resulting to the laser-induced transformation. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Pacific cod (Gadus macrocephalus) is an important component of fisheries and food webs in the North Pacific Ocean and Bering Sea. However, vital rates of early life stages of this species have yet to be described in detail. We determined the thermal sensitivity of growth rates of embryos, preflexion and postflexion larvae, and postsettlement juveniles. Growth rates (length and mass) at each ontogenetic stage were measured in three replicate tanks at four to five temperatures. Nonlinear regression was used to obtain parameters for independent stage-specific growth functions and a unified size- and temperature-dependent growth function. Specific growth rates increased with temperature at all stages and generally decreased with increases in body size. However, these analyses revealed a departure from a strict size-based allometry in growth patterns, as reduced growth rates were observed among preflexion larvae: the reduction in specific growth rate between embryos and free-swimming larvae was greater than expected based on body size differences. Growth reductions in the preflexion larvae appear to be associated with increased metabolic rates and the transition from endogenous to exogenous feeding. In future studies, experiments should be integrated across life transitions to more clearly define intrinsic ontogenetic and size-dependent growth patterns because these are critical for evaluations of spatial and temporal variation in habitat quality.
Resumo:
© 2014 Cambridge University Press. This paper describes a detailed experimental study using hot-wire anemometry of the laminar-turbulent transition region of a rotating-disk boundary-layer flow without any imposed excitation of the boundary layer. The measured data are separated into stationary and unsteady disturbance fields in order to elaborate on the roles that the stationary and the travelling modes have in the transition process. We show the onset of nonlinearity consistently at Reynolds numbers, R, of ∼ 510, i.e. at the onset of Lingwood's (J. Fluid Mech., vol. 299, 1995, pp. 17-33) local absolute instability, and the growth of stationary vortices saturates at a Reynolds number of ∼ 550. The nonlinear saturation and subsequent turbulent breakdown of individual stationary vortices independently of their amplitudes, which vary azimuthally, seem to be determined by well-defined Reynolds numbers. We identify unstable travelling disturbances in our power spectra, which continue to grow, saturating at around R=585, whereupon turbulent breakdown of the boundary layer ensues. The nonlinear saturation amplitude of the total disturbance field is approximately constant for all considered cases, i.e. different rotation rates and edge Reynolds numbers. We also identify a travelling secondary instability. Our results suggest that it is the travelling disturbances that are fundamentally important to the transition to turbulence for a clean disk, rather than the stationary vortices. Here, the results appear to show a primary nonlinear steep-fronted (travelling) global mode at the boundary between the local convectively and absolutely unstable regions, which develops nonlinearly interacting with the stationary vortices and which saturates and is unstable to a secondary instability. This leads to a rapid transition to turbulence outward of the primary front from approximately R=565 to 590 and to a fully turbulent boundary layer above 650.
Resumo:
We show that diffusion can play an important role in protein-folding kinetics. We explicitly calculate the diffusion coefficient of protein folding in a lattice model. We found that diffusion typically is configuration- or reaction coordinate-dependent. The diffusion coefficient is found to be decreasing with respect to the progression of folding toward the native state, which is caused by the collapse to a compact state constraining the configurational space for exploration. The configuration- or position-dependent diffusion coefficient has a significant contribution to the kinetics in addition to the thermodynamic free-energy barrier. It effectively changes (increases in this case) the kinetic barrier height as well as the position of the corresponding transition state and therefore modifies the folding kinetic rates as well as the kinetic routes. The resulting folding time, by considering both kinetic diffusion and the thermodynamic folding free-energy profile, thus is slower than the estimation from the thermodynamic free-energy barrier with constant diffusion but is consistent with the results from kinetic simulations. The configuration- or coordinate-dependent diffusion is especially important with respect to fast folding, when there is a small or no free-energy barrier and kinetics is controlled by diffusion.Including the configurational dependence will challenge the transition state theory of protein folding.
Resumo:
To study the brittle-ductile transition (BDT) of polypropylene (PP)/ethylene-propylene-diene monomer (EPDM) blends induced by size, temperature, and time, the toughness of the PP/EPDM blends was investigated over wide ranges of EPDM content, temperature, and strain rate. The toughness of the blends was determined from the tensile fracture energy of the side-edge notched samples. The concept of interparticle distance (ID) was introduced into this study to probe the size effect on the BDT of PP/EPDM blends, whereas the effect of time corresponded to that of strain rate. The BDT induced by size, temperature, and time was observed in the fracture energy versus ID, temperature, and strain rate. The critical BDT temperatures for various EPDM contents at different initial strain rates were obtained from these transitions. The critical interparticle distance (IDc) increased nonlinearly with increasing temperature, and when the initial strain rate was lower, the IDc was larger. Moreover, the variation of the reciprocal of the initial strain rate with the reciprocal of temperature followed different straight lines for various EPDM contents. These straight lines were with the same slope.
Resumo:
We report observation of inverted phases consisting of spheres and/or cylinders of the majority fraction block in a poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer by solvent-induced order-disorder phase transition (ODT). The SBS sample has a molecular weight of 140K Da and a polystyrene (PS) weight fraction of 30%. Tapping mode atomic force microscopy (AFM) and transmission electron microscopy (TEM) were utilized to study the copolymer microstructure of a set of solution-cast SBS films dried with different solvent evaporation rates, R. The control with different R leads to kinetic frozen-in of microstructures corresponding to a different combination parameter chi (eff)Z of the drying films (where chi (eff) is the effective interaction parameter of the polymer solution in the cast film and Z the number of "blobs" of size equal to the correlation length one block copolymer chain contains), for which faster evaporation rates result in microstructures of smaller chi (eff)Z. As R was decreased from rapid evaporations (similar to0.1 mL/h), the microstructure evolved from a totally disordered one sequentially to inverted phases consisting of spheres and then cylinders of polybutadiene (PB) in a PS matrix and finally reached the equilibrium phase, namely cylinders of PS in a PB matrix. We interpret the formation of inverted phases as due to the increased relative importance of entropy as chi (eff)Z is decreased, which may dominate the energy penalty for having a bigger interfacial area between the immiscible blocks in the inverted phases.
Resumo:
Evans D A, Roberts O R, Vearey-Roberts A R, Langstaff D P, Twitchen D J and Schwitters M 2007 Direct observation of Schottky to ohmic transition in Al-diamond contacts using realtime photoelectron spectroscopy Appl. Phys. Lett. 91 132114 doi:10.1063/1.2790779
Resumo:
Whereas common infectious and parasitic diseases such as malaria and the HIV/AIDS pandemic remain major unresolved health problems in many developing countries, emerging non-communicable diseases relating to diet and lifestyle have been increasing over the last two decades, thus creating a double burden of disease and impacting negatively on already over-stretched health services in these countries. Prevalence rates for type 2 diabetes mellitus and CVD in sub-Saharan Africa have seen a 10-fold increase in the last 20 years. In the Arab Gulf current prevalence rates are between 25 and 35% for the adult population, whilst evidence of the metabolic syndrome is emerging in children and adolescents. The present review focuses on the concept of the epidemiological and nutritional transition. It looks at historical trends in socio-economic status and lifestyle and trends in nutrition-related non-communicable diseases over the last two decades, particularly in developing countries with rising income levels, as well as the other extreme of poverty, chronic hunger and coping strategies and metabolic adaptations in fetal life that predispose to non-communicable disease risk in later life. The role of preventable environmental risk factors for obesity and the metabolic syndrome in developing countries is emphasized and also these challenges are related to meeting the millennium development goals. The possible implications of these changing trends for human and economic development in poorly-resourced healthcare settings and the implications for nutrition training are also discussed.
Resumo:
We propose a new approach for modeling nonlinear multivariate interest rate processes based on time-varying copulas and reducible stochastic differential equations (SDEs). In the modeling of the marginal processes, we consider a class of nonlinear SDEs that are reducible to Ornstein--Uhlenbeck (OU) process or Cox, Ingersoll, and Ross (1985) (CIR) process. The reducibility is achieved via a nonlinear transformation function. The main advantage of this approach is that these SDEs can account for nonlinear features, observed in short-term interest rate series, while at the same time leading to exact discretization and closed-form likelihood functions. Although a rich set of specifications may be entertained, our exposition focuses on a couple of nonlinear constant elasticity volatility (CEV) processes, denoted as OU-CEV and CIR-CEV, respectively. These two processes encompass a number of existing models that have closed-form likelihood functions. The transition density, the conditional distribution function, and the steady-state density function are derived in closed form as well as the conditional and unconditional moments for both processes. In order to obtain a more flexible functional form over time, we allow the transformation function to be time varying. Results from our study of U.S. and UK short-term interest rates suggest that the new models outperform existing parametric models with closed-form likelihood functions. We also find the time-varying effects in the transformation functions statistically significant. To examine the joint behavior of interest rate series, we propose flexible nonlinear multivariate models by joining univariate nonlinear processes via appropriate copulas. We study the conditional dependence structure of the two rates using Patton (2006a) time-varying symmetrized Joe--Clayton copula. We find evidence of asymmetric dependence between the two rates, and that the level of dependence is positively related to the level of the two rates. (JEL: C13, C32, G12) Copyright The Author 2010. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org, Oxford University Press.
Resumo:
Measurements of ultraviolet line fluxes from Space Telescope Imaging Spectrograph and Far-Ultraviolet Spectroscopic Explorer spectra of the K2-dwarf e Eri are reported. These are used to develop new emission measure distributions and semi-empirical atmospheric models for the chromosphere and lower transition region of the star. These models are the most detailed constructed to date for a main-sequence star other than the Sun. New ionization balance calculations, which account for the effect of finite density on dielectronic recombination rates, are presented for carbon, nitrogen, oxygen and silicon. The results of these calculations are significantly different from the standard Arnaud & Rothenflug ion balance, particularly for alkali-like ions. The new atmospheric models are used to place constraints on possible first ionization potential (FIP)-related abundance variations in the lower atmosphere and to discuss limitations of single-component models for the interpretation of certain optically thick line fluxes. © 2005 RAS.
Monodomain strained ferroelectric PbTiO(3) thin films: Phase transition and critical thickness study
Resumo:
This work demonstrates that instead of paraelectric PbTiO(3), completely c-oriented ferroelectric PbTiO(3) thin films were directly grown on (001)-SrTiO(3) substrates by pulsed-laser deposition with thickness up to 340 nm at a temperature well above the Curie temperature of bulk PbTiO(3). The influence of laser-pulse frequency, substrate-surface termination on growth, and functional properties were studied using x-ray diffraction, transmission electron microscopy, and piezoresponse force microscopy. At low growth rates (frequency 8 Hz) a domains were formed for film thickness above 20-100 nm. Due to coherency strains the Curie temperature (T(c)) of the monodomain films was increased approximately by 350 degrees C with respect to the T(c) of bulk PbTiO(3) even for 280-nm-thick films. Nonetheless, up to now this type of growth mode has been considered unlikely to occur since the Matthews-Blakeslee (MB) model already predicts strain relaxation for films having a thickness of only similar to 10 nm. However, the present work disputes the applicability of the MB model. It clarifies the physical reasons for the large increase in T(c) for thick films, and it is shown that the experimental results are in good agreement with the predictions based on the monodomain model of Pertsev et al. [Phys. Rev. Lett. 80, 1988 (1998)].
Resumo:
Aims. We present rates for all E1, E2, M1, and M2 transitions among the 295 fine-structure levels of the configurations 3d9, 3d84s, 3d74s2, 3d84p, and 3d74s4p, determined through an extensive configuration interaction calculation.
Methods. The CIV3 code developed by Hibbert and coworkers is used to determine for these levels configuration interaction wave functions with relativistic effects introduced through the Breit-Pauli approximation.
Results. Two different sets of calculations have been undertaken with different 3d and 4d functions to ascertain the effect of such variation. The main body of the text includes a representative selection of data, chosen so that key points can be discussed. Some analysis to assess the accuracy of the present data has been undertaken, including comparison with earlier calculations and the more limited range of experimental determinations. The full set of transition data is given in the supplementary material as it is very extensive.
Conclusions. We believe that the present transition data are the best currently available.
Resumo:
Background: The global transfer of nursing and midwifery education to higher education institutes has led to student nurses and midwives experiencing challenges previously faced by traditional third-level students, including isolation, loneliness, financial difficulties and academic pressure. These challenges can contribute to increased stress and anxiety levels which may be detrimental to the successful transition to higher education, thus leading to an increase in attrition rates. Peer mentoring as an intervention has been suggested to be effective in supporting students in the transition to third-level education through enhancing a sense of belongingness and improving student satisfaction, engagement and retention rates. This proposed systematic review aims to determine the effectiveness of peer mentoring in enhancing levels of student engagement, sense of belonging and overall satisfaction of first-year undergraduate students following transition into higher education.
Methods: MEDLINE, Web of Knowledge, ProQuest, Embase, CINAHL, ERIC, PsycINFO and CENTRAL databases will be searched for qualitative, quantitative and mixed methods studies on the implementation of peer assessment strategies in higher education institutes (HEIs) or universities for full-time, first-year adult students (>17 years). Included studies will be limited to the English language. The quality of included studies will be assessed using a validated Mixed Methods Appraisal Tool (MMAT). The findings will be presented as a narrative synthesis or meta-analysis as appropriate following sequential explanatory synthesis.
Discussion: The review will provide clear, non-biased evidence-based guidance to all third-level educators on the effectiveness of peer-mentoring programmes for first-year undergraduates. The review is necessary to help establish which type of peer mentoring is most effective. The evidence from qualitative and quantitative studies drawn from the international literature will be utilised to illustrate the best way to implement and evaluate peer mentoring as an effective intervention and will be useful in guiding future research and practice in this area. These findings may be applied internationally across all disciplines.
Resumo:
Rates and products of the oxidation of diphenyl sulfide, phenyl methyl sulfide, p-chlorophenyl methyl sulfide and diphenyl sulfoxide have been determined. Oxidants included t-Bu02H alone, t-Bu02H plus molybdenum or vanadium catalysts and the molybdenum peroxo complex Mo0(02)2*HMPT. Reactions were chiefly carried out in ethanol at temperatures ranging from 20° to 65°C. Oxidation of diphenyl sulfide by t-Bu02H in absolute ethanol at 65°C followed second-order kinetics with k2 = 5.61 x 10 G M~1s"1, and yielded only diphenyl sulfoxide. The Mo(C0)g-catalyzed reaction gave both the sulfoxide and the sulfone with consecutive third-order kinetics. Rate = k3[Mo][t-Bu02H][Ph2S] + k^[Mo][t-Bu02H][Ph2S0], where log k3 = 12.62 - 18500/RT, and log k^ = 10.73 - 17400/RT. In the absence of diphenyl sulfide, diphenyl sulfoxide did not react with t-Bu02H plus molybdenum catalysts, but was oxidized by t-Bu02H-V0(acac)2. The uncatalyzed oxidation of phenyl methyl sulfide by t-Bu02H in absolute ethanol at 65°C gave a second-order rate constant, k = 3.48 x 10~"5 M^s""1. With added Mo(C0)g, the product was mainly phenyl methyl sulfoxide; Rate = k3[Mo][t-Bu02H][PhSCH3] where log k3 = 22.0 - 44500/RT. Both diphenyl sulfide and diphenyl sulfoxide react readily with the molybdenum peroxy complex, Mo0(02)2'HMPT in absolute ethanol at 35°C, yielding diphenyl sulfone. The observed features are mainly in agreement with the literature on metal ion-catalyzed oxidations of organic compounds by hydroperoxides. These indicate the formation of an active catalyst and the complexation of t-Bu02H with the catalyst. However, the relatively large difference between the activation energies for diphenyl sulfide and phenyl methyl sulfide, and the non-reactivity of diphenyl sulfoxide suggest the involvement of sulfide in the production of an active species.
Resumo:
Although the link between macroeconomic news announcements and exchange rates is well documented in recent literature, this connection may be unstable. By using a broad set of macroeconomic news announcements and high frequency forex data for the Euro/Dollar, Pound/Dollar and Yen/Dollar from Nov 1, 2004 to Mar 31, 2014, we obtain two major findings with regards to this instability. First, many macroeconomic news announcements exhibit unstable effects with certain patterns in foreign exchange rates. These news effects may change in magnitude and even in their sign over time, over business cycles and crises within distinctive contexts. This finding is robust because the results are obtained by applying a Two-Regime Smooth Transition Regression Model, a Breakpoints Regression Model, and an Efficient Test of Parameter Instability which are all consistent with each other. Second, when we explore the source of this instability, we find that global risks and the reaction by central bank monetary policy to these risks to be possible factors causing this instability.