244 resultados para Théorème de Huxley


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grattan, J. Huxley, S. Pyatt, B. Modern Bedouin exposures to copper contamination: an imperial legacy? Ecotoxicology and environmental safety. 2003. 55 pp 108-115

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grattan, J., Huxley, S., Karaki, L. A., Toland, H., Gilbertson, D., Pyatt, B., Saad, Z. A. (2002). 'Death . . . more desirable than life'? The human skeletal record and toxicological implications of ancient copper mining and smelting in Wadi Faynan, southwestern Jordan. Toxicology and Industrial Health, 18 (6), 297-307.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1) A large body of behavioral data conceming animal and human gaits and gait transitions is simulated as emergent properties of a central pattern generator (CPG) model. The CPG model incorporates neurons obeying Hodgkin-Huxley type dynamics that interact via an on-center off-surround anatomy whose excitatory signals operate on a faster time scale than their inhibitory signals. A descending cornmand or arousal signal called a GO signal activates the gaits and controL their transitions. The GO signal and the CPG model are compared with neural data from globus pallidus and spinal cord, among other brain structures. 2) Data from human bimanual finger coordination tasks are simulated in which anti-phase oscillations at low frequencies spontaneously switch to in-phase oscillations at high frequencies, in-phase oscillations can be performed both at low and high frequencies, phase fluctuations occur at the anti-phase in-phase transition, and a "seagull effect" of larger errors occurs at intermediate phases. When driven by environmental patterns with intermediate phase relationships, the model's output exhibits a tendency to slip toward purely in-phase and anti-phase relationships as observed in humans subjects. 3) Quadruped vertebrate gaits, including the amble, the walk, all three pairwise gaits (trot, pace, and gallop) and the pronk are simulated. Rapid gait transitions are simulated in the order--walk, trot, pace, and gallop--that occurs in the cat, along with the observed increase in oscillation frequency. 4) Precise control of quadruped gait switching is achieved in the model by using GO-dependent modulation of the model's inhibitory interactions. This generates a different functional connectivity in a single CPG at different arousal levels. Such task-specific modulation of functional connectivity in neural pattern generators has been experimentally reported in invertebrates. Phase-dependent modulation of reflex gain has been observed in cats. A role for state-dependent modulation is herein predicted to occur in vertebrates for precise control of phase transitions from one gait to another. 5) The primary human gaits (the walk and the run) and elephant gaits (the amble and the walk) are sirnulated. Although these two gaits are qualitatively different, they both have the same limb order and may exhibit oscillation frequencies that overlap. The CPG model simulates the walk and the run by generating oscillations which exhibit the same phase relationships. but qualitatively different waveform shapes, at different GO signal levels. The fraction of each cycle that activity is above threshold quantitatively distinguishes the two gaits, much as the duty cycles of the feet are longer in the walk than in the run. 6) A key model properly concerns the ability of a single model CPG, that obeys a fixed set of opponent processing equations to generate both in-phase and anti-phase oscillations at different arousal levels. Phase transitions from either in-phase to anti-phase oscillations, or from anti-phase to in-phase oscillations, can occur in different parameter ranges, as the GO signal increases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The article retraces the career of the famous hypnotist Onofroff and particularly his visit to Buenos Aires, where his activity, in 1895, provoked many discussions and some public embarrassment. In this context Darío, using a pseudonym, published his crónica “La esfinge”. We reproduce “La esfinge”, transcribing the original text of La Nación, with annotations identifying the literary and theosophical sources Darío used when he wrote it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article links Thomas Hardy’s exploration of sympathy in Jude the Obscure to contemporary scientific debates over moral evolution. Tracing the relationship between pessimism, progressivism, and determinism in Hardy’s understanding of sympathy, it also considers Hardy’s conception of the author as enlarger of “social sympathies”--a position, I argue, that was shaped by Leslie Stephen’s advocacy of novel writing as moral art. Considering Hardy’s engagement with writings by Charles Darwin, T. H. Huxley, Herbert Spencer, and others, I explore the novel’s participation in a debate about the evolutionary significance of sympathy and its implications for Hardy’s understanding of moral agency. Hardy, I suggest, offered a stronger defence of morality based on biological determinism than Darwin, but this determinism was linked to an unexpected evolutionary optimism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluorophore-spacer1-receptor1-spacer2-receptor2 system (where receptor2 alone is photoredox-inactive) shows ionically tunable proton-induced fluorescence off-on switching, which is reminiscent of thermionic triode behavior. This also represents a new extension to modular switch systems based on photoinduced electron transfer (PET) towards the emulation of analogue electronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most biologically-inspired artificial neurons are those of the third generation, and are termed spiking neurons, as individual pulses or spikes are the means by which stimuli are communicated. In essence, a spike is a short-term change in electrical potential and is the basis of communication between biological neurons. Unlike previous generations of artificial neurons, spiking neurons operate in the temporal domain, and exploit time as a resource in their computation. In 1952, Alan Lloyd Hodgkin and Andrew Huxley produced the first model of a spiking neuron; their model describes the complex electro-chemical process that enables spikes to propagate through, and hence be communicated by, spiking neurons. Since this time, improvements in experimental procedures in neurobiology, particularly with in vivo experiments, have provided an increasingly more complex understanding of biological neurons. For example, it is now well-understood that the propagation of spikes between neurons requires neurotransmitter, which is typically of limited supply. When the supply is exhausted neurons become unresponsive. The morphology of neurons, number of receptor sites, amongst many other factors, means that neurons consume the supply of neurotransmitter at different rates. This in turn produces variations over time in the responsiveness of neurons, yielding various computational capabilities. Such improvements in the understanding of the biological neuron have culminated in a wide range of different neuron models, ranging from the computationally efficient to the biologically realistic. These models enable the modeling of neural circuits found in the brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most biologically-inspired artificial neurons are those of the third generation, and are termed spiking neurons, as individual pulses or spikes are the means by which stimuli are communicated. In essence, a spike is a short-term change in electrical potential and is the basis of communication between biological neurons. Unlike previous generations of artificial neurons, spiking neurons operate in the temporal domain, and exploit time as a resource in their computation. In 1952, Alan Lloyd Hodgkin and Andrew Huxley produced the first model of a spiking neuron; their model describes the complex electro-chemical process that enables spikes to propagate through, and hence be communicated by, spiking neurons. Since this time, improvements in experimental procedures in neurobiology, particularly with in vivo experiments, have provided an increasingly more complex understanding of biological neurons. For example, it is now well understood that the propagation of spikes between neurons requires neurotransmitter, which is typically of limited supply. When the supply is exhausted neurons become unresponsive. The morphology of neurons, number of receptor sites, amongst many other factors, means that neurons consume the supply of neurotransmitter at different rates. This in turn produces variations over time in the responsiveness of neurons, yielding various computational capabilities. Such improvements in the understanding of the biological neuron have culminated in a wide range of different neuron models, ranging from the computationally efficient to the biologically realistic. These models enable the modelling of neural circuits found in the brain. In recent years, much of the focus in neuron modelling has moved to the study of the connectivity of spiking neural networks. Spiking neural networks provide a vehicle to understand from a computational perspective, aspects of the brain’s neural circuitry. This understanding can then be used to tackle some of the historically intractable issues with artificial neurons, such as scalability and lack of variable binding. Current knowledge of feed-forward, lateral, and recurrent connectivity of spiking neurons, and the interplay between excitatory and inhibitory neurons is beginning to shed light on these issues, by improved understanding of the temporal processing capabilities and synchronous behaviour of biological neurons. This research topic aims to amalgamate current research aimed at tackling these phenomena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório da prática de ensino supervisionada, Mestrado em Ensino da Matemática, Universidade de Lisboa, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UANL

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proves a new representation theorem for domains with both discrete and continuous variables. The result generalizes Debreu's well-known representation theorem on connected domains. A strengthening of the standard continuity axiom is used in order to guarantee the existence of a representation. A generalization of the main theorem and an application of the more general result are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Suzumura shows that a binary relation has a weak order extension if and only if it is consistent. However, consistency is demonstrably not sufficient to extend an upper semi-continuous binary relation to an upper semicontinuous weak order. Jaffray proves that any asymmetric (or reflexive), transitive and upper semicontinuous binary relation has an upper semicontinuous strict (or weak) order extension. We provide sufficient conditions for existence of upper semicontinuous extensions of consistence rather than transitive relations. For asymmetric relations, consistency and upper semicontinuity suffice. For more general relations, we prove one theorem using a further consistency property and another with an additional continuity requirement.