291 resultados para Tellurium
Resumo:
Periodic nanostructures along the polarization direction of light are observed inside silica glasses and tellurium dioxide single crystal after irradiation by a focused single femtosecond laser beam. Backscattering electron images of the irradiated spot inside silica glass reveal a periodic structure of stripe-like regions of similar to 20 nm width with a low oxygen concentration. In the case of the tellurium dioxide single crystal, secondary electron images within the focal spot show the formation of a periodic structure of voids with 30 nm width. Oxygen defects in a silica glass and voids in a tellurium dioxide single crystal are aligned perpendicular to the laser polarization direction. These are the smallest nanostructures below the diffraction limit of light, which are formed inside transparent materials. The phenomenon is interpreted in terms of interference between the incident light field and the electric field of electron plasma wave generated in the bulk of material.
Resumo:
We propose an all-laser processing approach allowing controlled growth of organic-inorganic superlattice structures of rare-earth ion doped tellurium-oxide-based glass and optically transparent polydimethyl siloxane (PDMS) polymer; the purpose of which is to illustrate the structural and thermal compatibility of chemically dissimilar materials at the nanometer scale. Superlattice films with interlayer thicknesses as low as 2 nm were grown using pulsed laser deposition (PLD) at low temperatures (100 °C). Planar waveguides were successfully patterned by femtosecond-laser micro-machining for light propagation and efficient Er(3+)-ion amplified spontaneous emission (ASE). The proposed approach to achieve polymer-glass integration will allow the fabrication of efficient and durable polymer optical amplifiers and lossless photonic devices. The all-laser processing approach, discussed further in this paper, permits the growth of films of a multitude of chemically complex and dissimilar materials for a range of optical, thermal, mechanical and biological functions, which otherwise are impossible to integrate via conventional materials processing techniques.
Resumo:
Polycrystalline nanotubular Bi2Te3 could be prepared via a high-temperature solution process using nanoscale tellurium, decomposed from trioctylphosphine oxide (TOPO) extracted tellurium species (Te-TOPO), as sacrificial template. The formation of such tubular structure is believed to be the result of outward diffusion of Te during the alloying process. The electrical properties (Seebeck coefficient and electrical conductivity) of the polycrystalline nanotubular Bi2Te3 have been studied and the experimental results show that the electrical conductivity is approximately three orders of magnitude smaller than bulk bismuth telluride materials mainly due to the much larger resistance brought by the insufficient contact between the nanotubular structures.
Resumo:
The platinum-group elements (PGE), including Os, Ir, Ru, Rh, Pt and Pd, axe strongly siderophile and chalcophile. On the basis of melting temperature, the PGE may be divided into two groups: the Ir group (IPGE, >2000°C) consisting of Os, Ir and Ru, and the Pd group (PPGE, <20GO°C) consisting of Rh, Pt and Pd. Because of their unique geochemical properties, PGE provide critical information on global-scale differentiation processes, such as core-mantle segregation, late accretionary history, and core-mantle exchange. In addition, they may be used to identify magma source regions and unravel complex petrogenetic processes including partial melting, melt percolation and metasomatism in the mantle, magma mixing and crustal contamination in magma chambers and melt crystallization.Compared with other rocks, (ultra)mafic rocks have lower REE content but higher PGE content, so PGE have advantages in studying the petrogeneses and evolution of them. In this study, we selected (ultra)mafic rocks collected in Dabie Orogen and volcanic rocks from Fuxin Region. Based on the distribution and behaviour of platinum-group elements, combined with other elements, we speculate the magma evolution and source mantle of these (ultra)mafic rocks and volcanic rocks.Many (ultra)mafic rocks are widely distributed in Dabie Region. According to their deformation and metamorphism, we classed them into three types. One is intrusive (ultra)mafic rocks, which are generally undeformed and show no or little sign of metamorphism, such as (ultra)mafic intrusions in Shacun, zhujiapu, Banzhufan, qingshan, Xiaohekou, Jiaoziyan, Renjiawan and Daoshichong. The other one is ultrahigh pressure metamorphic (ultra)mafic rocks, some of them appeared as eelogites, such as complex in Bixiling and adjacent Maowu. Another one is intense deformed and metamorphic, termed as tectonic slice, alpine-type (ultra)mafic rocks. The most representative is Raobazhai and Dahuapin. However, there are many controversies about the formation of those (ultra)mafic rocks. Here, we select typical rocks of the three types. The PGE were determined by inductively coupled plasma mass spectrometry (ICP-MS) ater NiS fire-assay and tellurium co-precipitation.The PGE tracing shows that three components are needed in the source of the cretaceous (uitra)mafic intrusions. They could be old enriched sub-continental lithospheric mantle, lower crust and depleted asthenospheric mantle. The pattern of PGE also shows the primitive magma of these intrusions underwent S saturation. According to palladium, we can conclude that the mantle enrich in PGE. Distribution of PGE in Bixiiing and Maowu (ultra)mafic rocks display they are products of magmas fractional crystallization. The (ultra)mafic rocks in Bixiiing and Maowu are controlled by various magmatic processes and the source mantle is depleted in PGE. Of interest is that the mantle produced UHP (ultra)mafic rocks are PGE-depleted, whereas the mantle of cretaceous (ultra)mafic intrusions are enrich in PGE. This couldindicate that the mantle change from PGE-enriched to PGE-depleted during120-OOMa, which in accord with the time of tectonic system change in the East China. At the same time, (ultra)mafic intrusions in cretaceous took information of deep mantle, which means the processes in deep mantle arose structural movement in the crust The character of PGE in alpine-type (ultra)mafic rocks declared that the rocks had experienced two types of metasomatic processes - hydrous melt derived from slab and silicate melt. In addition, we analyze the platinum-group elements in volcanic rocks on the northern margin of the North China Craton, Fuxin. The volcanic rocks characterized by negative anomalies of platinum. This indicates that platinum alloys, which may host some Pt resided in the mantle. The PGE patterns also show that Jianguo alkali basalts derived from asthenospheric mantle source, but wulahada high-Mg andesites derived from lithospheric mantle.
Resumo:
Background: Members of the genus Cronobacter are causes of rare but severe illness in neonates and preterm infants following the ingestion of contaminated infant formula. Seven species have been described and two of the species genomes were subsequently published. In this study, we performed comparative genomics on eight strains of Cronobacter, including six that we sequenced (representing six of the seven species) and two previously published, closed genomes.
Results: We identified and characterized the features associated with the core and pan genome of the genus Cronobacter in an attempt to understand the evolution of these bacteria and the genetic content of each species. We identified 84 genomic regions that are present in two or more Cronobacter genomes, along with 45 unique genomic regions. Many potentially horizontally transferred genes, such as lysogenic prophages, were also identified. Most notable among these were several type six secretion system gene clusters, transposons that carried tellurium, copper and/or silver resistance genes, and a novel integrative conjugative element.
Conclusions: Cronobacter have diverged into two clusters, one consisting of C. dublinensis and C. muytjensii (Cdub-Cmuy) and the other comprised of C. sakazakii, C. malonaticus, C. universalis, and C. turicensis, (Csak-Cmal-Cuni-Ctur) from the most recent common ancestral species. While several genetic determinants for plant-association and human virulence could be found in the core genome of Cronobacter, the four Cdub-Cmuy clade genomes contained several accessory genomic regions important for survival in a plant-associated environmental niche, while the Csak-Cmal-Cuni-Ctur clade genomes harbored numerous virulence-related genetic traits.
Resumo:
A system comprised of a Bomem interferometer and a LT3-110 Heli-Tran cryostat was set up to measure the reflectance of materials in the mid-infrared spectral region. Several tests were conducted to ensure the consistency and reliability of the system. Silicon and Chromium, two materials with well known optical properties were measured to test the accuracy of the system, and the results were found to be in good agreement with the literature. Reflectance measurements on pure SnTe and several Pb and Mn-doped alloys were carried out. These materials were chosen because they exhibit a strong plasma edge in the mid infrared region. The optical conductivity and several related optical parameters were calculated from the measured reflectance. Very low temperature measurements were carried out in the far-infrared on Sn9SMn2Te, and the results are indicative of a spin glass phase at 0.8 K. Resistivity measurements were made at room temperature. The resistivity values were found, as expected, to decrease with increasing carrier concentration and to increase with increasing manganese concentration.
Resumo:
Photothermal spectroscopy is a group of high sensitivity methods used to measure optical absorption and thermal characteristics of a sample.The basis of photothermal spectroscopy is a photo-induced change in the thermal state of the sample.Light energy absorbed and not lost by subsequent emission results in sample heating.This heating results in a temperature change as well as changes in thermodynamic parameters of the sample which are related to temperature.Measurements of the temperature,pressure,or density changes that occur due to optical absorption are ultimately the basis for the photothermal spectroscopic methods.This is a more direct measure of optical absorption than optical transmission based spectroscopies.Sample heating is a direct consequence of optical absorption and so photothermal spectroscopy signals are directly dependent on light absorption.Scattering and reflection losses do not produce photothermal signals.Subsequently,photothermal spectroscopy more accurately measures optical absorption in scattering solutions,in solids,and at interfaces.This aspect makes it particularly attractive for application to surface and solid absorption studies,and studies in scattering media.
Resumo:
Intrinsic paramagnetic responses were observed in the 60TeO(2)-25ZnO-15Na(2)O and 85TeO(2)-15Na(2)O mol% glasses, after gamma-irradiation at room temperature: (1) a shoulder at g(1) = g(parallel to) = 2.02 +/- 0.01 and an estimated g(perpendicular to)similar to 2.0 attributed to tellurium-oxygen hole center (TeOHC); (2) a narrow resonance at g(2)= 1.9960 +/- 0.0005 related to the modifiers and (3) a resolved resonance at g(3) = 1.9700 +/- 0.0005 ascribed to a tellurium electron center (TeEC) of an electron trapped at an oxygen vacancy (V(o)(+)) in a tellurium oxide structural center. It is suggested that the creation of (NBO(-),V(o)(+)) pair follows a mechanism where the modifier oxide molecule actuates as a catalyser. An additional model for the NBO radiolysis produced by the gamma-irradiation is proposed on the basis of the evolution of the g(1), g(2) and g(3) intensities with increasing dose (kGy). Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.
Resumo:
Brumadoite, ideally Cu(2)Te(6+)O(4)(OH)(4)center dot 5H(2)O, is a new mineral from Pedra Preta mine, Serra das Eguas, Brumado, Bahia, Brazil. It occurs as microcrystalline aggregates both on and, rarely, pseudomorphous after coarse-grained magnesite, associated with mottramite and quartz. Crystals are platy, subhedral, 1-2 mu m in size. Brumadoite is blue (near RHS 114B), has a pale blue streak and a vitreous lustre. It is transparent to translucent and does not fluoresce. The empirical formula is (Cu(2.90)Pb(0.04)Ca(0.01))(Sigma 2.95) (Te(0.93)(6+)Si(0.05))(Sigma 0.98)O(3.92)(OH)(3.84)center dot 5.24H(2)O. Infrared spectra clearly show both (OH) and H(2)O. Microchemical spot tests using a KI Solution show that brumadoite has tellurium in the 6(+) state. The mineral is monoclinic, P2(1)/m or P2(1). Unit-cell parameters refined from X-ray powder data are a 8.629(2) angstrom, b 5.805(2) angstrom, c 7.654(2) angstrom, beta 103.17(2)degrees, V 373.3(2) angstrom(3), Z = 2. The eight strongest X-ray powder-diffraction lines [d in angstrom, (l),(hkl)] are: 8.432,(100),(100); 3.162,(66),((2) over bar 02); 2.385,(27),(220); 2.291,((1) over bar 12),(22); 1.916,(11),(312); 1.666,(14),((4) over bar 22,114); 1.452,(10), (323, 040); 1.450,(10),(422,403). The name is for the type locality, Brumado, Bahia, Brazil. The new mineral species has been approved by the CNMNC (IMA 2008-028).
Resumo:
A functional group tolerant palladium-catalyzed Negishi coupling of diaryl tellurides with organozinc has been developed. This methodology permits efficient preparation of biaryls, aryl acetylenes and diaryl acetylenes in moderate to good yields. A preliminary study to gain further insight into the reaction was performed using in situ ReactIR technology. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We evaluated the in vitro antioxidant effect of alkyl-organotellurides A-D on lipid peroxidation and protein carbonylation in rat liver homogenates. The thiol oxidase and thiol peroxidase-like activities of compounds were investigated. delta-Aminolevulinic acid dehydratase (delta-ALA-D) activity was determined in rat liver homogenates. Compounds A-D protected against lipid peroxidation induced by Fe(2+)/EDTA and sodium nitroprusside (SNP). According to the confidence limits of the IC(50) values of compounds A-D, the IC(50) values for organotellurides followed the order: C (0.30 mu M) <= B (0.40 mu M) < D (0.68 mu M) < A (2.90 mu M), for Fe(2+)/EDTA, and B (0.21 mu M) <= C (0.33 mu M) < D (0.43 mu M) < A (1.21 mu M) for SNP-induced lipid peroxidation. Compounds A-D reduced protein carbonyl content to control levels. The results demonstrated an inverse correlation between thiol oxidase and delta-ALA-D activities. This study supports an antioxidant effect of organotellurides A-D on rat liver.
Resumo:
Lithium and magnesium organotellurolates were reacted with lactones producing the corresponding tellurocarboxylic acids. Treatment of the reaction mixture with lithium aluminum hydride allowed the isolation of the corresponding hydroxytellurides in a one-pot operation. (C) 2009 Published by Elsevier Ltd
Resumo:
A C-O-dianionic zincate was generated by a Te/Li exchange reaction of an alkyltelluride, followed by Li/Zn transmetallation and reaction with methyllithium. The reaction between the enantiomerically pure (99% ee) (R)-dianionic zincate and benzoyl chloride led to 3-hydroxy-1-phenyl pentanone with total retention of the carbon configuration (99% ee). Similar results were obtained using the corresponding Lipshutz cyanocuprates. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
1-(Phenylthio)-, 1-(phenylseleno)- and 1-(phenyltelluro)-propan-2-ol were efficiently resolved by CAL-B in sc-CO(2). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A set of chiral beta-tellurium amines and their selenium and sulfur-containing derivatives have been efficiently synthesized in good to excellent yields via the ring-opening reaction of chiral aziridines by chalcogen nucleophilic species. (C) 2008 Elsevier B.V. All rights reserved.