924 resultados para TSALLIS ENTROPY
Resumo:
We derive a simple closed analytical expression for the total entropy production along a single stochastic trajectory of a Brownian particle diffusing on a periodic potential under an external constant force. By numerical simulations we compute the probability distribution functions of the entropy and satisfactorily test many of the predictions based on Seiferts integral fluctuation theorem. The results presented for this simple model clearly illustrate the practical features and implications derived from such a result of nonequilibrium statistical mechanics.
Resumo:
Isothermal magnetization curves up to 23 T have been measured in Gd5Si1.8Ge2.2. We show that the values of the entropy change at the first-order magnetostructural transition, obtained from the Clausius-Clapeyron equation and the Maxwell relation, are coincident, provided the Maxwell relation is evaluated only within the transition region and the maximum applied field is high enough to complete the transition. These values are also in agreement with the entropy change obtained from differential scanning calorimetry. We also show that a simple phenomenological model based on the temperature and field dependence of the magnetization accounts for these results.
Resumo:
The magnetocaloric effect that originates from the martensitic transition in the ferromagnetic Ni-Mn-Gashape-memory alloy is studied. We show that this effect is controlled by the magnetostructural coupling at boththe martensitic variant and magnetic domain length scales. A large entropy change induced by moderatemagnetic fields is obtained for alloys in which the magnetic moment of the two structural phases is not verydifferent. We also show that this entropy change is not associated with the entropy difference between themartensitic and the parent phase arising from the change in the crystallographic structure which has beenfound to be independent of the magnetic field within this range of fields.
Resumo:
The objective of this essay is to reflect on a possible relation between entropy and emergence. A qualitative, relational approach is followed. We begin by highlighting that entropy includes the concept of dispersal, relevant to our enquiry. Emergence in complex systems arises from the coordinated behavior of their parts. Coordination in turn necessitates recognition between parts, i.e., information exchange. What will be argued here is that the scope of recognition processes between parts is increased when preceded by their dispersal, which multiplies the number of encounters and creates a richer potential for recognition. A process intrinsic to emergence is dissolvence (aka submergence or top-down constraints), which participates in the information-entropy interplay underlying the creation, evolution and breakdown of higher-level entities.
Resumo:
We answer the following question: given any n∈ℕ, which is the minimum number of endpoints en of a tree admitting a zero-entropy map f with a periodic orbit of period n? We prove that en=s1s2…sk−∑i=2ksisi+1…sk, where n=s1s2…sk is the decomposition of n into a product of primes such that si≤si+1 for 1≤i
Resumo:
The continuous wavelet transform is obtained as a maximumentropy solution of the corresponding inverse problem. It is well knownthat although a signal can be reconstructed from its wavelet transform,the expansion is not unique due to the redundancy of continuous wavelets.Hence, the inverse problem has no unique solution. If we want to recognizeone solution as "optimal", then an appropriate decision criterion hasto be adopted. We show here that the continuous wavelet transform is an"optimal" solution in a maximum entropy sense.
Resumo:
A maximum entropy statistical treatment of an inverse problem concerning frame theory is presented. The problem arises from the fact that a frame is an overcomplete set of vectors that defines a mapping with no unique inverse. Although any vector in the concomitant space can be expressed as a linear combination of frame elements, the coefficients of the expansion are not unique. Frame theory guarantees the existence of a set of coefficients which is “optimal” in a minimum norm sense. We show here that these coefficients are also “optimal” from a maximum entropy viewpoint.
Resumo:
Neuronal dynamics are fundamentally constrained by the underlying structural network architecture, yet much of the details of this synaptic connectivity are still unknown even in neuronal cultures in vitro. Here we extend a previous approach based on information theory, the Generalized Transfer Entropy, to the reconstruction of connectivity of simulated neuronal networks of both excitatory and inhibitory neurons. We show that, due to the model-free nature of the developed measure, both kinds of connections can be reliably inferred if the average firing rate between synchronous burst events exceeds a small minimum frequency. Furthermore, we suggest, based on systematic simulations, that even lower spontaneous inter-burst rates could be raised to meet the requirements of our reconstruction algorithm by applying a weak spatially homogeneous stimulation to the entire network. By combining multiple recordings of the same in silico network before and after pharmacologically blocking inhibitory synaptic transmission, we show then how it becomes possible to infer with high confidence the excitatory or inhibitory nature of each individual neuron.
Resumo:
A sign of presence in virtual environments is that people respond to situations and events as if they were real, where response may be considered at many different levels, ranging from unconscious physiological responses through to overt behavior,emotions, and thoughts. In this paper we consider two responses that gave different indications of the onset of presence in a gradually forming environment. Two aspects of the response of people to an immersive virtual environment were recorded: their eye scanpath, and their skin conductance response (SCR). The scenario was formed over a period of 2 min, by introducing an increasing number of its polygons in random order in a head-tracked head-mounted display. For one group of experimental participants (n 8) the environment formed into one in which they found themselves standing on top of a 3 m high column. For a second group of participants (n 6) the environment was otherwise the same except that the column was only 1 cm high, so that they would be standing at normal ground level. For a third group of participants (n 14) the polygons never formed into a meaningful environment. The participants who stood on top of the tall column exhibited a significant decrease in entropy of the eye scanpath and an increase in the number of SCR by 99 s into the scenario, at a time when only 65% of the polygons had been displayed. The ground level participants exhibited a similar decrease in scanpath entropy, but not the increase in SCR. The random scenario grouping did not exhibit this decrease in eye scanpath entropy. A drop in scanpath entropy indicates that the environment had cohered into a meaningful perception. An increase in the rate of SCR indicates the perception of an aversive stimulus. These results suggest that on these two dimensions (scanpath entropy and rate of SCR) participants were responding realistically to the scenario shown in the virtual environment. In addition, the response occurred well before the entire scenario had been displayed, suggesting that once a set of minimal cues exists within a scenario,it is enough to form a meaningful perception. Moreover, at the level of the sympathetic nervous system, the participants who were standing on top of the column exhibited arousal as if their experience might be real. This is an important practical aspect of the concept of presence.
Resumo:
This paper deals with the relationship between the periodic orbits of continuous maps on graphs and the topological entropy of the map. We show that the topological entropy of a graph map can be approximated by the entropy of its periodic orbits.
Resumo:
This paper deals with the relationship between the periodic orbits of continuous maps on graphs and the topological entropy of the map. We show that the topological entropy of a graph map can be approximated by the entropy of its periodic orbits
Resumo:
In this study, feature selection in classification based problems is highlighted. The role of feature selection methods is to select important features by discarding redundant and irrelevant features in the data set, we investigated this case by using fuzzy entropy measures. We developed fuzzy entropy based feature selection method using Yu's similarity and test this using similarity classifier. As the similarity classifier we used Yu's similarity, we tested our similarity on the real world data set which is dermatological data set. By performing feature selection based on fuzzy entropy measures before classification on our data set the empirical results were very promising, the highest classification accuracy of 98.83% was achieved when testing our similarity measure to the data set. The achieved results were then compared with some other results previously obtained using different similarity classifiers, the obtained results show better accuracy than the one achieved before. The used methods helped to reduce the dimensionality of the used data set, to speed up the computation time of a learning algorithm and therefore have simplified the classification task
Resumo:
Changes in the electroencephalography (EEG) signal have been used to study the effects of anesthetic agents on the brain function. Several commercial EEG based anesthesia depth monitors have been developed to measure the level of the hypnotic component of anesthesia. Specific anesthetic related changes can be seen in the EEG, but still it remains difficult to determine whether the subject is consciousness or not during anesthesia. EEG reactivity to external stimuli may be seen in unconsciousness subjects, in anesthesia or even in coma. Changes in regional cerebral blood flow, which can be measured with positron emission tomography (PET), can be used as a surrogate for changes in neuronal activity. The aim of this study was to investigate the effects of dexmedetomidine, propofol, sevoflurane and xenon on the EEG and the behavior of two commercial anesthesia depth monitors, Bispectral Index (BIS) and Entropy. Slowly escalating drug concentrations were used with dexmedetomidine, propofol and sevoflurane. EEG reactivity at clinically determined similar level of consciousness was studied and the performance of BIS and Entropy in differentiating consciousness form unconsciousness was evaluated. Changes in brain activity during emergence from dexmedetomidine and propofol induced unconsciousness were studied using PET imaging. Additionally, the effects of normobaric hyperoxia, induced during denitrogenation prior to xenon anesthesia induction, on the EEG were studied. Dexmedetomidine and propofol caused increases in the low frequency, high amplitude (delta 0.5-4 Hz and theta 4.1-8 Hz) EEG activity during stepwise increased drug concentrations from the awake state to unconsciousness. With sevoflurane, an increase in delta activity was also seen, and an increase in alpha- slow beta (8.1-15 Hz) band power was seen in both propofol and sevoflurane. EEG reactivity to a verbal command in the unconsciousness state was best retained with propofol, and almost disappeared with sevoflurane. The ability of BIS and Entropy to differentiate consciousness from unconsciousness was poor. At the emergence from dexmedetomidine and propofol induced unconsciousness, activation was detected in deep brain structures, but not within the cortex. In xenon anesthesia, EEG band powers increased in delta, theta and alpha (8-12Hz) frequencies. In steady state xenon anesthesia, BIS and Entropy indices were low and these monitors seemed to work well in xenon anesthesia. Normobaric hyperoxia alone did not cause changes in the EEG. All of these results are based on studies in healthy volunteers and their application to clinical practice should be considered carefully.