807 resultados para TRIPLET EMITTER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate hybrid vertical architecture transistors that operate like metal-base transistors, using n-type silicon as the collector, sulfonated polyaniline as the base, and C-60 fullerene as the emitter. Electrical measurements suggest that the sulfonated polyaniline base effectively screens the emitter from electric field variations occurring in the collector leading to the metal-base transistor behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An amorphous photoluminescent material based on a dithienylbenzothiadiazole structure has been used for the fabrication of organic red-light-emitting diodes. The synergistic effects of the electron-transport ability and exciton confinement of the emitting material allow for the fabrication of efficient pure-red-light-emitting devices without a hole blocker.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the fabrication of permeable metal-base transistors based on bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-biphenyl-4-olato) aluminum (BAlq(3))/tri(8-hydroxyquinoline) aluminum (Alq(3)) isotype heterostructure as emitter layer. In this transistor, n-Si was used as the collector, LiF/Al as the emitter electrode, and Au/Al bilayer metal as the base. We show that the leakage current is greatly reduced in Al/n-Si/Au/Al/BAlq(3)/Alq(3)/LiF/Al devices with respect to Al/n-Si/Au/Al/Alq(3)/LiF/Al devices due to the utilization of BAlq(3)/Alq(3) isotype heterostructure emitter, leading to high common-base and common-emitter current gains at low driving voltages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the suitability of N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB), an organic semiconductor widely used in organic light-emitting diodes (OLEDs), for high-gain, low operational voltage nanostructured vertical-architecture transistors, which operate as permeable-base transistors. By introducing vanadium oxide (V2O5) between the injecting metal and NPB layer at the transistor emitter, we reduced the emitter operational voltage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate red organic light-emitting diodes (OLEDs) with improved color purity and electroluminescence (EL) efficiency by codoping a green fluorescent sensitizer 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1, 1, 7,7-tetramethyl-1H, 5H, 11H-(1)-benzopyropyrano(6,7-8-ij)quinolizin-11-one (C545T) as the second dopant and a red fluorescent dye 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as the lumophore into tris(8-hydroquinoline) aluminum (Alq(3)) host. It was found that the C545 T dopant did not by itself emit but assisted the carrier trapping from the host Alq(3) to the red emitting dopant. The red OLEDs realized by this approach not only kept the purity of the emission color, but also significantly improved the EL efficiency. The current efficiency and power efficiency, respectively, reached 12 cd/A at a current density of 0.3 mA/cm(2) and 10lm/W at a current density of 0.02 mA/cm(2), which are enhanced by 1.4 and 2.6 times compared with devices where the emissive layer is composed of the DCJTB doped Alq(3), and a stable red emission (chromaticity coordinates: x = 0.64, y = 0.36) was obtained in a wide range of voltage. Our results indicate that the coguest system is a promising method for obtaining high-efficiency red OLEDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the electrical characterization of hybrid permeable-base transistors with tris(8-hydroxyquinoline) aluminum as emitter layer. These transistors were constructed presenting an Al/n-Si/Au/Alq(3)/V2O5/Al structure. We investigate the influence of the V2O5 layer thickness and demonstrate that these devices present high common-base and common-emitter current gain, and can be operated at very low driving voltages, lower than 1 V, in both, common-base and common-emitter modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroluminescence (EL) devices with Eu(HTH)(3)phen [HTH: 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)-1,3-hexanedione, phen: I 10-phenanthroline] as an emissive centre were fabricated using vacuum evaporation. In addition to the Eu3+ 5D0 --> F-7(J) (J = 0-4) lines that were visible in the photoluminescence signal, the device also showed strong emission from the D-5(1) --> F-7(J) (J = 0-4) transitions. The enhanced emission from the D-5(1) F-7(J) (J = 0-4) transitions was attributed to the increased excitation intensity in the EL device. The luminescence lifetimes of the 5 D, and 5 Do levels were measured to be 0.6 mus and 866 mus, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We synthesized a hydroxyphenyloxadiazole lithium complex (LiOXD) as a blue light-emitting and electron injection/transport material to be used in double-layer organic electroluminescent devices. Devices with the concise configuration of ITO/TPD/LiOXD/Al showed bright blue EL emission centered at 468 nm with a maximum luminance of 2900 cd m(-2). A current efficiency of 3.9 cd A(-1) and power efficiency of 1.1 lm W-1 were obtained. LiOXD was also examined as an interface material. The efficiency of an ITO/NPB/Alq(3)/Al device increased considerably when LiOXD was inserted between Alq(3) and aluminium. The improvement of the device characteristics with LiOXD approached that observed with the dielectric LiF salt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2-(2-hydroxyphenyl)-5-phenyl-1, 3, 4-oxadiazole (HOXD), characteristic of excited state intramolecular proton-transfer (ESIPT), was synthesized and found to emit strong blue phosphorescence in the solid state at room temperature and at low temperature (77 K). The photoluminescent spectrum measurement in solution showed that there are two kinds of emission: fluorescence originated from the singlet state and phosphorescence derived from the triplet state in HOXD formed by ESIPT. For the photoluminescent spectrum in the solid state, only phosphorescence emission with the lifetime of 66 mus was observed. Multiple-layer light-emitting diodes with the configuration of ITO/NPB/HOXD/BCP/Alq(3)/Mg:Ag were fabricated using HOXD as emitter and the maximum brightness of 656 cd/m(2) and the luminous efficiency of 0.14 lm/W was obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By comparing the phosphorescence spectra of Gd(acac)(3) (acac=acetylacetone), Gd(TFacac)3 (TFacac=1,1,1-trifluoroacetylacetone), the effects of fluorine replacement of hydrogen on the triplet state energy of the ligands were revealed. Fluorine can lower the triplet state energy of Hacac and make it more suitable for energy transfer towards the D-5(4) state of terbium. Organic electroluminescent devices (OELDs) with the corresponding trivalent terbium complexes as emissive layers were fabricated. Triple-layer-type devices with a structure of glass substrate/ITO (indium tin oxide)/PVK [poly(N-vinylcarbazole)]/PVK : Tb complex: PBD [2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole]/PBD/Al exhibit bright green luminescence upon applying a dc voltage. The luminance of a device with Tb(TFacac)(3)phen (1,10-phenanthroline) and Tb( TFacac) 3 as emissive layer is higher than that of the corresponding devices with Tb(acac)(3)(phen) and Tb(acac)(3) as emissive layers. The EL device with Tb(TFacac)(3)(phen) as emitter exhibits characteristic emission of Tb3+ ions with a maximum luminance of 58 cd m(-2) at 25 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eu3+ narrow band emitting EL device with PPV, Alq(3) as hole and electron transportation layers has been prepared. The emitting layer, which consists of PVK, Eu(DBM)(3) and PBD is formed by spin-casting method. A maximum luminance of 52cd.m(-2) is achieved from the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transient dynamical studies of bis[(5,5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II)]ethyne (PPd(2)), 5,15-bis{[(5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II)]ethynyl}(10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II) (PPd(3)), bis[(5,5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II)]ethyne (PPt(2)), and 5,15-bis{[(5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II)]ethynyl}(10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II) (PPt(3)) show that the electronically excited triplet states of these highly conjugated supermolecular chromophores can be produced at unit quantum yield via fast S(1) → T(1) intersystem crossing dynamics (τ(isc): 5.2-49.4 ps). These species manifest high oscillator strength T(1) → T(n) transitions over broad NIR spectral windows. The facts that (i) the electronically excited triplet lifetimes of these PPd(n) and PPt(n) chromophores are long, ranging from 5 to 50 μs, and (ii) the ground and electronically excited absorptive manifolds of these multipigment ensembles can be extensively modulated over broad spectral domains indicate that these structures define a new precedent for conjugated materials featuring low-lying π-π* electronically excited states for NIR optical limiting and related long-wavelength nonlinear optical (NLO) applications.