947 resultados para THIN POLYMER-FILMS
Resumo:
Large amplitude local density fluctuations in a thin superfluid He film is considered. It is shown that these large amplitude fluctuations travel and behave like "quasi-solitons" under collision, even when the full nonlinearity arising from the Van der Waals potential is taken into account.
Resumo:
A guest/host material system in which the guest molecule is a functionalized, optically nonlinear, chromophore is described. A verification of the crosslinking process, an assessment of the nonlinear properties of the chromophore, using Solvatochromic methods, and an investigation of the electric field induced molecular orientation using second-harmonic generation are included.
Resumo:
Photoinduced poling (PIP) is a new technique which allows the room‐temperature preparation of guest/host polymer films exhibiting significant polar order for nonlinear optical applications. We report a comparison of this novel technique with the conventional electrode poling procedure performed at the glass transition temperature of the polymer using disperse red 1/poly(methylmethacrylate) films. In particular, in situ second harmonic generation measurements show that levels of polar order achieved using these two techniques are similar. In contrast, the stability of the polar order is reduced by up to 20 times in terms of the decay time constant in films prepared using PIP although the stability is very dependent upon the temperature at which the poling was performed.
Resumo:
Experimental results of the temperature dependence of the nonlinear optical response of methyl red doped polymethylmethacrylate films in the range 20°C to 170°C are reported. It is found that the intensity of the phase conjugate signal resulting from degenerate four-wave mixing using pump and probe beams with parallel polarisation states increases dramatically on heating by a factor of ∼ 10, reaching a maximum at ∼ 100°C. The intensity of the phase conjugate signal for the case with crossed polarisation states of the pump and probe beams drops monotonically with increasing temperature. For both configurations the response time shortens with increasing temperature. The particular role of the polymer matrix in this temperature variation of the nonlinear optical response is discussed.
Resumo:
Near-perfect vector phase conjugation was achieved at 488 nm in a methyl red dye impregnated polymethylmethacrylate film by employing a temperature tuning technique. Using a degenerate four-wave mixing geometry with vertically polarized counterpropagating pump beams, intensity and polarization gratings were written in the dye/polymer system using a vertically or horizontally polarized weak probe beam. Over a limited temperature range, as the sample was heated, the probe reflectivity from the polarization grating dropped but the reflectivity from the intensity grating rose sharply. At a sample temperature of approximately 50°C, the reflectivities of the gratings were measured to be equal and we confirmed that, at this temperature, the measured vector phase conjugate fidelity was very close to unity. We discuss a possible explanation of this effect.
Resumo:
The deposition and characterization of Se films doped with Pb underpotentially deposited (UPD) ad-atoms was studied in this work. The employed experimental techniques were cyclic voltammetry, chronoamperometry, electrochemical impedance spectroscopy, UV-vis spectroscopy and atomic force microscopy. The initial deposition of Se film by chronoamperometry yielded a thin film composed of approximately 700 layers. The Pb UPD on Se was achieved by chronoamperometry in a potential value previously determined in voltammetric experiments. This deposition yielded a deposition charge of approximately 7.5% of the total one. The film resistance altered from 320 Omega cm(2) for Se to 65 Omega cm(2) for the Se/Pb one. Flat band potential values and number of acceptors and donors were also calculated for both films and the values obtained were + 0.95 and -0.51 V for Se and Se/Pb, respectively. The Se coating presented 1.2 x 10(17) cm(3) acceptors while the Se/Pb one presented 3.2 x 10(17) cm(3) donors. The band gap values for both films were 2.4 eV and 1.9 eV, correspondingly. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Polymer films, deposited from acetylene and argon plasma mixtures, were bombarded with 150 keV He+ ions, varying the fluence, Phi, from 10(18) to 10(21) ions/m(2). Molecular structure and optical gap of the samples were investigated by infrared and ultraviolet-visible spectroscopies, respectively. Two-point probe was employed to determine the electrical resistivity while hardness was measured by nanoindentation technique. It was verified modification of the molecular structure and composition of the films. There was loss of H and increment in the concentration of unsaturated carbon bonds with Phi. Optical gap and electrical resistivity decreased while hardness increased with Phi. Interpretation of these results is proposed in terms of chain crosslinking and unsaturation. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Mercury thin films prepared by electrochemical deposition on Pt-Ir alloy and after partial removing of mercury at different temperatures were studied by means of an interferometric surface mapping microscope and by X-ray photoelectronic spectroscopy. Mercury film samples having mercury partially removed by anodic stripping at a potential more positive than the corresponding peak in the voltammogram were also studied using the same techniques. For blank samples the surface topographic studies showed well defined grain boundaries. Mercury film samples when heated up to different temperatures showed as material is removed and that the surface roughness decreases as the temperature increases. For samples heated up to 800 degrees C the surface roughness is approximately the same that for the blank. A model for the interphase of volumetric mercury electrodeposited on a Pt-Ir alloy has been proposed using samples both electrochemically and thermally removed of their Hg coatings. The model includes a layered three-region structure, containing at least two Pt-Hg intermetallics: PtHg4 and PtHg2. A substrate modified region, iridium rich, has also been detected. (C) 1999 Elsevier B.V. S.A. All rights reserved.
Resumo:
Polymer films synthesized from plasmas of a tetramethylsilane - Ar mixture were modified by irradiation with 170 keV He ions at fluences ranging from 1 x 10(14) to 1 x 10(16) cm(-2). As revealed by infrared spectroscopy, the ion beam produced intense bond rearrangements, such as the depletion of bonding groups (C-H and Si-H), and induced the formation of new ones, such as O-H and Si-O. From the nanoindentation measurements, a remarkable increase in the surface hardness of the films was observed as the ion fluence was increased. The increases in hardness were accompanied by an increase in the film compaction as shown by using a combination of RBS and film thickness measurements. From both hardness and infrared measurements A was concluded that, under the He ion bombardment, the polymer structure is transformed into a silicon oxycarbide network.
Resumo:
This work describes the influence of the ion bombardment on the electrical, optical and mechanical properties of polymer films deposited from radio-frequency plasmas of benzene. Irradiations were conducted using N+ at 5 x 10(19) ions/m(2), varying the ion energy, E-0, from 0 to 150 keV. Film elemental composition was determined by Rutherford backscattering spectroscopy. Electrical resistivity and hardness were obtained by the two-point probe and nanoindentation technique, respectively. Ultraviolet-visible spectroscopy was employed to investigate the optical constants of the samples. Etching rate was determined by exposure of the films to reactive oxygen plasmas. Ion bombardment induced gradual loss of H and increase in C and O concentrations with Eo. As a consequence the electrical, optical and mechanical properties were drastically affected. Interpretation of these results is proposed in terms of chain cross-linking and unsaturation. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
PANI films were deposited on glass substrates by in-situ polymerization and characterized by UV-VIS spectroscopy and atomic force microscopy. A method is developed to accurately analyze ellipsometric data obtained for transparent glass substrates before and after modification with absorbing polymer films. Surface modification was made with an overlayer such as polyaniline ( PANI), which exhibits different optical properties by varying its oxidation state. First, the issue of using transparent substrates for ellipsometry studies was examined and then, spectroscopic ellipsometry was used to characterize absorbing overlayers on transparent glasses. The same methodologies of data analysis can be also applied to other absorbing films on transparent substrates, and deposited by different techniques.
Resumo:
Thin uranium films built on muscovite mica basis and obsidian samples having known ages were irradiated with thermal neutrons at the IPEN/CNEN reactor, São Paulo. Comparing thin film performance with the obsidian one, it was observed that the latter feel a greater neutron fluence. Nominal fluences at the used facility are in agreement with the results obtained analysing the obsidian samples. A probable hypothesis to explain this disagreement, namely, the uranium loss from the thin films, was ruled out. © 1995.