978 resultados para THERMAL PROTEIN DENATURATION
Resumo:
We report on the size, shape, structure, and interactions of lysozyme in the ternary system lysozyme/DMSO/water at low protein concentrations. Three structural regimes have been identified, which we term the ""folded"" (0 < phi(DMSO) < 0.7), ""unfolded"" (0.7 <= phi(DMSO) < 0.9), and ""partially collapsed"" (0.9 <= phi(DMSO) < 1.0) regime. Lysozyme resides in a folded conformation with an average radius of gyration of 1.3 +/- 0.1 nm for phi(DMSO) < 0.7 and unfolds (average R(g) of 2.4 +/- 0.1 nm) above phi(DMSO) > 0.7. This drastic change in the protein`s size coincides with a loss of the characteristic tertiary structure. It is preceded by a compaction of the local environment of the tryptophan residues and accompanied by a large increase in the protein`s overall flexibility. In terms of secondary structure, there is a gradual loss of alpha-helix and concomitant increase of beta-sheet structural elements toward phi(DMSO) = 0.7, while an increase in phi(DMSO) at even higher DMSO volume fractions reduces the presence of both a-helix and beta-sheet secondary structural elements. Protein-protein interactions remain overall repulsive for all values of phi(DMSO) An attempt is made to relate these structural changes to the three most important physical mechanisms that underlie them: the DMSO/water microstructure is strongly dependent on the DMSO volume fraction, DMSO acts as a strong H-bond acceptor, and DMSO is a bad solvent for the protein backbone and a number of relatively polar side groups, but a good solvent for relatively apolar side groups, such as tryptophan.
Resumo:
1. The relationship between repeated thermal treatments and hepatic synthesis of Hsp 70 was studied in broiler chickens.2. Sixty broilers were submitted to 5 different treatments (12 birds each) from day 1 to day 42. Four groups were kept in a thermoneutral environment and subjected to 0, 1, 2 and 3 heat stress episodes at 35 degrees C for 4 h per week (TN-0, TN-1, TN-2 and TN-3, respectively). The last group (HT-35) was reared at a room temperature of 35 degrees C.3. From 39 to 42 old, the birds experienced acute heat stress at 41 degrees C. Resistance to heat stress was evaluated by the time taken for rectal temperature to increase by 3 degrees C above the pre-treatment value. Livers were collected (before and after heat stress) and Hsp70 was determined using Western Blot analysis with monoclonal anti-Hsp70 antibody.4. Resistance to heat stress and concentration of Hsp70 were higher in those birds subjected to more heat stress episodes during the experimental period (TN-3) and HT-35. A positive correlation was observed between Hsp70 concentration and the time taken for a 3 degrees C increase in rectal temperature (r=0.42; P<0.01).5. Exposing birds to episodes of heat stress (35 degrees C) during rearing may improve their resistance to acute heat stress, but the previous thermal history did not seem to influence the hepatocyte Hsp70 content after exposure to more severe heat stress (41 degrees C).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The guava seed protein isolate ( PI) was obtained from the protein precipitation belonging to the class of the gluteline (Ip 4.5). The conditions for the preparation of the PI were determined by both the solubility curve and simultaneous thermogravimetry-differential thermal analysis (TG-DTA): pH 11.5, absence of NaCl and whiteners and T=( 25 +/- 3) degrees C. Under these conditions a yield of 77.0 +/- 0.4%, protein content of 94.2 +/- 0.3, ashes 0.50 +/- 0.05% and thermal stability, T= 200 degrees C, were obtained. The TG-DTA curves and the PI emulsification capacity study showed the presence of hydrophobic microdomains at pH 11.5 and 3.0 suggesting a random coil protein conformation and, to pH 10.0, an open protein conformation. The capacity of emulsification (CE), in the absence of NaCl, was verified for: 1 - pH 3.0 and 8.5, using the IP extracted at pH 10.0 and 11.5, CE >= 343 +/- 5 g of emulsified oil/g of protein; 2 - pH 6.60 just for the PI obtained at pH 11.5, CE >= 140 +/- 8 g of emulsified oil/g of protein.
Resumo:
The mycelia-to-yeast (M-Y) transition, thermal tolerance and virulence profiles were evaluated for nine isolates of Paracoccidioides brasiliensis, including samples from two of the three recently discovered cryptic species, as well as their relation to the partial sequence and transcription of the hsp70 gene. The isolates Bt84 and T10 (from PS2 species) took more time to convert to yeast form and presented elongated yeast cells at 36 degrees C. Arthroconidia production was also observed during the M-Y transition for some isolates. Our data confirm that the hsp70 transcription may be associated with thermal tolerance, but this does not seem to be directly related to high virulence profiles. The partial sequencing of this gene allowed the separation of our isolates into two clusters that correspond to the two sympatric cryptic species occurring in an area hyperendemic for PCM (Botucatu, SP, Brazil).
Resumo:
The purpose of this work was to investigate the viscoelastic properties of aqueous suspensions of crude collagen powder extracted from bovine hides and nonsubmitted to the hydrolysis reaction that leads to gelatin. The studied variables included the collagen concentration and the addition of xanthan gum or maltodextrin at varied concentrations during heating/cooling of the mixtures. Differential scanning calorimetry thermograms showed that the addition of polysaccharides decreased the endothermic peak areas observed at the denaturation temperature of collagen. The rheological properties of the pure collagen suspensions were highly dependent on concentration: 4% and 6% collagen suspensions presented a great increase in the storage modulus after heating/cooling, whereas for concentrations of 8% and 10% G' decreased during heating and did not recover its original value after heating/cooling. The frequency sweeps showed that the thermal treatment was responsible by the strengthening of the interactions that formed the polymer network. Addition of 0.1% xanthan gum to collagen suspensions increased the gel strength, especially after heating/cooling of the system, whereas increasing gum concentration to 0.3% resulted in a weaker gel, which could indicate thermodynamic incompatibility between the biopolymers. Mixtures of collagen and maltodextrin resulted in more fluid structures than those obtained with pure collagen at the same collagen concentration and the range of temperatures in which these mixtures behaved as a gel decreased with increasing concentrations of both collagen and maltodextrin, suggesting incompatibilities between the biopolymers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Although nickel is a toxic metal for living organisms in its soluble form, its importance in many biological processes recently emerged. In this view, the investigation of the nickel-dependent enzymes urease and [NiFe]-hydrogenase, especially the mechanism of nickel insertion into their active sites, represent two intriguing case studies to understand other analogous systems and therefore to lead to a comprehension of the nickel trafficking inside the cell. Moreover, these two enzymes have been demonstrated to ensure survival and colonization of the human pathogen H. pylori, the only known microorganism able to proliferate in the gastric niche. The right nickel delivering into the urease active site requires the presence of at least four accessory proteins, UreD, UreE, UreF and UreG. Similarly, analogous process is principally mediated by HypA and HypB proteins in the [NiFe]-hydrogenase system. Indeed, HpHypA and HpHypB also have been proposed to act in the activation of the urease enzyme from H. pylori, probably mobilizing nickel ions from HpHypA to the HpUreE-HpUreG complex. A complete comprehension of the interaction mechanism between the accessory proteins and the crosstalk between urease and hydrogenase accessory systems requires the determination of the role of each protein chaperone that strictly depends on their structural and biochemical properties. The availability of HpUreE, HpUreG and HpHypA proteins in a pure form is a pre-requisite to perform all the subsequent protein characterizations, thus their purification was the first aim of this work. Subsequently, the structural and biochemical properties of HpUreE were investigated using multi-angle and quasi-elastic light scattering, as well as NMR and circular dichroism spectroscopy. The thermodynamic parameters of Ni2+ and Zn2+ binding to HpUreE were principally established using isothermal titration calorimetry and the importance of key histidine residues in the process of binding metal ions was studied using site-directed mutagenesis. The molecular details of the HpUreE-HpUreG and HpUreE-HpHypA protein-protein assemblies were also elucidated. The interaction between HpUreE and HpUreG was investigated using ITC and NMR spectroscopy, and the influence of Ni2+ and Zn2+ metal ions on the stabilization of this association was established using native gel electrophoresis, light scattering and thermal denaturation scanning followed by CD spectroscopy. Preliminary HpUreE-HpHypA interaction studies were conducted using ITC. Finally, the possible structural architectures of the two protein-protein assemblies were rationalized using homology modeling and docking computational approaches. All the obtained data were interpreted in order to achieve a more exhaustive picture of the urease activation process, and the correlation with the accessory system of the hydrogenase enzyme, considering the specific role and activity of the involved protein players. A possible function for Zn2+ in the chaperone network involved in Ni2+ trafficking and urease activation is also envisaged.
Resumo:
The genome sequence of the extremely thermophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their homologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50°C below that of M. jannaschii, their genomic G+C contents are nearly identical. The properties most correlated with the proteins of the thermophile include higher residue volume, higher residue hydrophobicity, more charged amino acids (especially Glu, Arg, and Lys), and fewer uncharged polar residues (Ser, Thr, Asn, and Gln). These are recurring themes, with all trends applying to 83–92% of the proteins for which complete sequences were available. Nearly all of the amino acid replacements most significantly correlated with the temperature change are the same relatively conservative changes observed in all proteins, but in the case of the mesophile/thermophile comparison there is a directional bias. We identify 26 specific pairs of amino acids with a statistically significant (P < 0.01) preferred direction of replacement.
Resumo:
We report single-molecule folding studies of a small, single-domain protein, chymotrypsin inhibitor 2 (CI2). CI2 is an excellent model system for protein folding studies and has been extensively studied, both experimentally (at the ensemble level) and theoretically. Conformationally assisted ligation methodology was used to synthesize the proteins and site-specifically label them with donor and acceptor dyes. Folded and denatured subpopulations were observed by fluorescence resonance energy transfer (FRET) measurements on freely diffusing single protein molecules. Properties of these subpopulations were directly monitored as a function of guanidinium chloride concentration. It is shown that new information about different aspects of the protein folding reaction can be extracted from such subpopulation properties. Shifts in the mean transfer efficiencies are discussed, FRET efficiency distributions are translated into potentials, and denaturation curves are directly plotted from the areas of the FRET peaks. Changes in stability caused by mutation also are measured by comparing pseudo wild-type CI2 with a destabilized mutant (K17G). Current limitations and future possibilities and prospects for single-pair FRET protein folding investigations are discussed.
Resumo:
cis-Diamminedichloroplatinum(II) (cisplatin) is a widely used anticancer drug that binds to and crosslinks DNA. The major DNA adduct of the drug results from coordination of two adjacent guanine bases to platinum to form the intrastrand crosslink cis-[Pt(NH3)2[d(GpG)-N7(1), -N7(2)]] (cis-Pt-GG). In the present study, spectroscopic and calorimetric techniques were employed to characterize the influence of this crosslink on the conformation, thermal stability, and energetics of a site-specifically platinated 20-mer DNA duplex. CD spectroscopic and thermal denaturation data revealed that the crosslink alters the structure of the host duplex, consistent with a shift from a B-like to an A-like conformation; lowers its thermal stability by approximately 9 degrees C; and reduces its thermodynamic stability by 6.3 kcal/mol at 25 degrees C, most of which is enthalpic in origin; but it does not alter the two-state melting behavior exhibited by the parent, unmodified duplex, despite the significant crosslink-induced changes noted above. The energetic consequences of the cis-Pt-GG crosslink are discussed in relation to the structural perturbations it induces in DNA and to how these crosslink-induced perturbations might modulate protein binding.
Resumo:
A major challenge for Streptococcus pyogenes vaccine development is the identification of epitopes that confer protection from infection by multiple S. pyogenes M-types. Here we have identified and characterised the distribution of common variant sequences from individual repeat units of the C-repeat region (CRR) of M-proteins representing 77 different M-types. Three polyvalent fusion vaccine candidates (SV1, SV2 and SV3) incorporating the most common variants were subsequently expressed and purified, and demonstrated to be alpha-helical by Circular Dichroism (CD), a secondary conformational characteristic of the CRR in the M-protein. Antibodies raised against each of these constructs recognise M-proteins that vary in their CRR, and bind to the surface of multiple S. pyogenes isolates. Antibodies raised against SV1, containing five variant sequences, also kill heterologous S. pyogenes isolates in in vitro bactericidal assays. Further structural characterisation of this construct demonstrated the conformation of SV1 was stable at different pHs, and thermal unfolding of SV1 a reversible process. Our findings demonstrate that linkage of multiple variant sequences into a single recombinant construct overcomes the need to embed the variant sequences in foreign helix promoting flanking sequences for conformational stability, and demonstrates the viability of the polyvalent candidates as global S. pyogenes vaccine candidates.