944 resultados para THERMAL GRAVIMETRIC ANALYSIS
Estudo termogravimétrico comparativo entre bagaço da cana-de-açucar e palha do café para energéticos
Resumo:
Dissertação (Mestrado em Tecnologia Nuclear)
Resumo:
Tese (Doutorado em Tecnologia Nuclear)
Resumo:
The ceramics industry in Piauí is nowadays with 55 industries where 11 are in Teresina which is the mainstream of the state, producing 55 million shingles; in which 10 % is of this production is wasted being sometimes thrown on the margins of rivers, roads and highways provoking an environmental degradation. The main goal of this work is to verify the potential of producing semi porous ceramic using grog of shingles, on the first part of this work bodies-of-proof were produced from a basic formula of an industry, doping it with 5 %, 10 %, 15 % and 20 % in mass and in the second part of this work some bodies-of-proof were produced from a formula where one raw material was substituted by 50 % of grog and another substituting it all by grog, bodies-of-proof made of a basic formula previously announced was used for experiment control.The grog and the raw materials were characterized by: particle size analysis , thermal differential analysis, X ray diffraction , X ray fluorescence, an thermal gravimetric analysis and rational analyses. The bodies-of-proof were sintetisized in an industrial oven obeying the normal cycle adopted by an industry, with peak temperatures of 1135 oC and a fast burning cycle of 25 minutes having as energetic fuel liquefied petroleum gas . The pieces that were obtained by this were submersed in rehearsed physics of: water absorption of, apparent specific mass, apparent porosity, lineal retraction, rupture tension to the flexural and dilatometry; mineralogical analysis for X ray diffraction; and microstructural for electronic microscope of sweeping. For all the formulas with addition of grog, superior priorities to the requested by the requirements for semi porous and for the formula to F2-2,5 superior priorities to standard formulas which justifies the incorporation of the shingles in mass for the semi porous ceramic
Resumo:
Nacomposites of polymers and lamellar clayminerals, has generated high scientific and technological interest, for having mechanical properties and gas barriers differentiated of polymers and conventional composites. In this work, it was developed nanocomposites by single screw extruder and injection, utilizing commercial raw material, with the goal to investigate the quality of new developed materials. It was evaluated the influence of the content and the kind of clay in the structure and in the nanocomposites properties. It was used regular and elastomeric poly (methyl methacrylate) (Acrigel LEP 100 and Acrigel ECP800) and six montmorillonites (Cloisite 10A, 11B, 15A, 20A, 25A e 30B) at the concentration of 1% e 3% in weight. The nanocomposites were characterized by X-ray diffraction (XRD), thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), colorimetric, optical transparency, flexural and tensile tests, Rockwell hardness and esclerometry. It was founded that is possible to obtain intercalated and exfoliated nanocomposites PMMA/MMT, and the top results was obtained in the materials with 1%in clay weight organophilizated with 2M2HT (Cloisite 15A and 20A) presented intercalate and hybrid morphology (exfoliated and flocullated). The ones that was produced with organophilizated clay with 2MHTL8 (Cloisite 30B) had excellent visual quality, but the majority presented hybrid morphology. In the materials processed with organophilizated clay with MT2ETOH (Cloisite 30B), there were color change and loss of transparency. It occurs improvement in a few mechanical properties, mainly in the materials produced with PMMA elastomeric (Acrigel ECP800), being more significant, the increase in the resistance to stripping in those nanocomposites
Resumo:
Purpose: To synthesize silver nanoparticles (AgNPs) of Arbutus andrachne leaf water extract (LE) and to evaluate the antimicrobial activity of both LE and AgNPs. Methods: The synthesized AgNPs were characterized using the following techniques: ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) analysis, and analysis of particle size (PS) and zeta potential (ZP). The antimicrobial activities of LE and NPs were assessed by Kirby-Bauer disc diffusion (DD) and broth microdilution (MD) methods according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI). LE and AgNPs were examined against fresh cultures of four Gram-positive and five Gram-negative bacteria, and three yeast strains. Results: AgNPs were successfully synthesized and characterized using Arbutus andrachne LE. The AgNPs showed moderate antibacterial activity against Staphylococcus aureus ATCC 6538p, S. epidermidis ATCC 12228, Escherichia coli ATCC 29998, Klebsiella pnemoniae ATCC 13883 and Pseudomonas aeruginosa ATCC 27853, and also antifungal activity against Candida albicans ATCC 10239 and C. krusei ATCC 6258. Conclusions: Due to the potent activity of AgNPs against Gram-positive and Gram-negative bacteria, and yeast strains, it is suggested that AgNPs are potential broad spectrum antimicrobial agents.
Resumo:
The use of biofuels remotes to the eighteenth century, when Rudolf Diesel made the first trials using peanut oil as fuel in a compression ignition engine. Based on these trials, there was the need for some chemical change to vegetable oil. Among these chemical transformations, we can mention the cracking and transesterification. This work aims at conducting a study using the thermocatalytic and thermal cracking of sunflower oil, using the Al-MCM-41 catalyst. The material type mesoporous Al-MCM-41 was synthesized and characterized by Hydrothermical methods of X-ray diffraction, scanning electron microscopy, nitrogen adsorption, absorption spectroscopy in the infrared and thermal gravimetric analysis (TG / DTG).The study was conducted on the thermogravimetric behavior of sunflower oil on the mesoporous catalyst cited. Activation energy, conversion, and oil degradation as a function of temperature were estimated based on the integral curves of thermogravimetric analysis and the kinetic method of Vyazovkin. The mesoporous material Al-MCM-41 showed one-dimensional hexagonal formation. The study of the kinetic behavior of sunflower oil with the catalyst showed a lower activation energy against the activation energy of pure sunflower oil. Two liquid fractions of sunflower oil were obtained, both in thermal and thermocatalytic pyrolisis. The first fraction obtained was called bio-oil and the second fraction obtained was called acid fraction. The acid fraction collected, in thermal and thermocatalytic pyrolisis, showed very high level of acidity, which is why it was called acid fraction. The first fraction was collected bio-called because it presented results in the range similar to petroleum diesel
Resumo:
In this work, through the use of thermal analysis techniques, the thermal stabilities of some antioxidants were investigated, in order to evaluate their resistance to thermal oxidation in oils, by heating canola vegetable oil, and to suggest that antioxidants would be more appropriate to increase the resistance of vegetable oils in the thermal degradation process in frying. The techniques used were: Thermal Gravimetric (TG) and Differential Scanning Calorimetry (DSC) analyses, as well as an allusion to a possible protective action of the vegetable oils, based on the thermal oxidation of canola vegetable oil in the laboratory under constant heating at 180 ºC/8 hours for 10 days. The studied antioxidants were: ascorbic acid, sorbic acid, citric acid, sodium erythorbate, BHT (3,5-di-tert-butyl-4-hydroxytoluene), BHA (2, 3-tert-butyl-4-methoxyphenol), TBHQ (tertiary butyl hydroquinone), PG (propyl gallate) - described as antioxidants by ANVISA and the FDA; and also the phytic acid antioxidant and the SAIB (sucrose acetate isobutyrate) additive, which is used in the food industry, in order to test its behavior as an antioxidant in vegetable oil. The following antioxidants: citric acid, sodium erythorbate, BHA, BHT, TBHQ and sorbic acid decompose at temperatures below 180 ºC, and therefore, have little protective action in vegetable oils undergoing frying processes. The antioxidants below: phytic acid, ascorbic acid and PG, are the most resistant and begin their decomposition processes at temperatures between 180 and 200 ºC. The thermal analytical techniques have also shown that the SAIB antioxidant is the most resistant to oxidative action, and it can be a useful choice in the thermal decomposition prevention of edible oils, improving stability regarding oxidative processes.
Resumo:
Poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3,([PVDF]1−x/[PZT]x) composites of volume fractions x and (0–3) type connectivity were prepared in the form of thin films. PZT powders with average grain sizes of 0.2, 0.84, and 2.35 μm in different volume fraction of PZT up to 40 % were mixed with the polymeric matrix. The influence of the inorganic particle size and its content on the thermal degradation properties of the composites was then investigated by means of thermo-gravimetric analysis. It is observed that filler size affects more than filler concentration the degradation temperature and activation energy of the polymer. In the same way and due to their larger specific area, smaller particles leave larger solid residuals after the polymer degradation. The polymer degradation mechanism is not significantly modified by the presence of the inorganic fillers. On the other hand, an inhibition effect occurs due to the presence of the fillers, affecting particularly the activation energy of the process.
Resumo:
In anurans, changes in ambient temperature influence body temperature and, therefore, energy consumption. These changes ultimately affect energy supply and, consequently, heart rate (HR). Typically, anurans living in different thermal environments have different thermal sensitivities, and these cannot be distinguished by changes in HR. We hypothesized that Rhinella jimi (a toad from a xeric environment that lives in a wide range of temperatures) would have a lower thermal sensitivity regarding cardiac control than R. icterica (originally from a tropical forest environment with a more restricted range of ambient temperatures). Thermal sensitivity was assessed by comparing animals housed at 15° and 25°C. Cardiac control was estimated by heart rate variability (HRV) and heart rate complexity (HRC). Differences in HRV between the two temperatures were not significant (P=0.214 for R. icterica and P=0.328 for R. jimi), whereas HRC differences were. All specimens but one R. jimi had a lower HRC at 15°C (all P<0.01). These results indicate that R. jimi has a lower thermal sensitivity and that cardiac control is not completely dependent on the thermal environment because HRC was not consistently different between temperatures in all R. jimi specimens. This result indicates a lack of evolutive trade-offs among temperatures given that heart rate control at 25°C is potentially not a constraint to heart rate control at 15°C.