983 resultados para TETRAMETHYLAMMONIUM HYDROXIDE DIGESTION
Resumo:
The industrial swine production is characterized by generation of significant effluent amounts that require treatment. The most adopted practices by Brazilian swine farmers have been wastewater storage in lagoons and its subsequent use as a biofertilizer. Nutrient accumulation in soil and water creates the need for an effective management of these residues. The anaerobic digestion process is an important alternative and low-cost treatment for organic matter reduction. However, its efficiency is limited by the digester capacity of solid degradation, especially at low hydraulic retention times. Thus, the present study aimed to verify the behavior of an upflow anaerobic digester by increasing the organic loading rate. This was accomplished in three stages using, as a parameter, volatile solids at 0.5; 1.0 and 1.5 kgVS m-3 d-1, respectively. This digester model proved to be quite robust and effective in swine manure treatment, achieving high efficiency of volatile solid removal at all stages of the study (stage 1: 61.38%; stage 2: 55.18%; and stage 3: 43.18%). Biogas production was directly related to the increasing organic load, reaching 0.14, 0.85, and 0.86 Nm³ kgVS-1add., respectively, with no significant difference (p<0.05) of biogas methane concentration among the studied stages (73.7, 75.0, and 77.9%).
Resumo:
ABSTRACT This paper studied the effect of adding an enzyme (ellulose) on anaerobic digestion of maize silage. We compared materials at chopping lengths of 8 mm (MSL), 4mm (MSS) and natural size (Ms) under a mesophilic and discontinuous operation (batch process). Hence, we found the process to be significantly influenced by particle size. Moreover, the ellulose addition did not significantly impact biogas production after a 35-day digestion period. Ms and MSS displayed an improved response to all variables when compared with MSL and MSL+C, with significant differences. Studies on the refractory fraction at infinite time (R0) have demonstrated that the lowest values correspond to Ms and MSS (0.122 and 0.155, respectively). The Kinetic approach and the Ultimate Biodegradability test are useful tools to evaluate the effect of the addition of an enzyme to the anaerobic process.
Resumo:
The presence of microorganisms in dental structures with experimentally induced necrosis was evaluated. The materials were tested to evaluate their antimicrobial activity and tissue repair efficacy. Four dogs were used in this experiment, with a total of 64 roots of premolar teeth, divided into three groups. The root canals of Group I were filled with gutta-percha and zinc oxide/eugenol cement; Group II were filled with calcium hydroxide, and Group III were not filled. All animals were clinically and radiographically examined 15 days after surgery andthen again every subsequent 15 days until 120 days, when the teeth were extracted en bloc.Histopathological analysis showed inflammatory infiltration, cement and bone resorption andnecrotic tissue in the apical delta in different proportions. Histomicrobiological analysis showedthe presence of microorganisms inside the teeth structures, with different concentrationsaccording to the treatment used. There was statistical significance between the groups(p>0.05). Gutta-percha with zinc oxide/eugenol demonstrated good antimicrobial activity;calcium hydroxide was not efficient. The conclusion of this study is that gutta-percha withzinc oxide/eugenol is the better protocol for filling root canals in dogs.
Resumo:
A high final brightness is desired in most paper and board products. This requires bleaching processes that are able to produce high-brightness pulps. Mechanical pulps are widely bleached for high brightness using alkaline hydrogen peroxide with traditional sodium hydroxide and sodium silicate as additives. With high doses however, peroxide bleaching causes high organic loads in the mill effluent and anionic trash carry-over to papermaking. To alleviate the problems that arise from the use of sodium-based additives in peroxide bleaching, interest in the use of alternative magnesium-based chemicals has increased. In this study, a new, technical high-purity magnesium hydroxide-based bleaching additive was evaluated on laboratory-scale, pilot-scale and mill-scale experiments and trials for its ability to produce a high brightness in peroxide bleaching without the known problems of sodium-based chemicals. The key findings of this study include: a high brightening potential of peroxide bleaching using the Mg(OH)2-based additive, significant reductions (40-70%) in all categories of environmental load, and cationic demand lowered by 60-70% in bleached pulp with no loss in strength properties or in sheet bulk. When used in TMP refiner bleaching, the Mg(OH)2-based additive resulted in savings in specific energy consumption and provided a good bleaching response.
Resumo:
The aims of this study were to evaluate the effectiveness of diquat, copper hydroxide, copper oxychloride and their associations diquat + 0.1% copper oxychloride and diquat + 0.1% copper hydroxide to control Cerathophyllum demersum. Therefore, the concentrations used were 0.1, 0.3, 0.5, 0.7, 1.0 and 1.5 mg L-1 oxychloride and copper hydroxide and 0.2, 0.4, 0.8 and 1.2 mg L-1 diquat and their associations with 0.1% copper oxychloride and 0.1% copper and a control hydroxide. The experimental design was completely randomized with ten replications for 45 days. For evaluation we used a scale of 0-100% control of notes and rated the weight (g) and length (cm) of pointers at the end of the trial period. Diquat showed 100% efficacy at 30 DAA, associations in 21 DAA and copper sources promoted regrowth of C. demersum. Diquat and its associations were more effective in controlling C. demersum. The use of herbicide in combination with a copper source is more efficient for the control of submerged weeds because it potentiates the effect of the herbicide in weed control
Resumo:
The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 µM Fe3+) on the normal human red blood cell (RBC) antioxidant system was evaluated in vitro by measuring total (GSH) and oxidized (GSSG) glutathione levels, and superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and reductase (GSH-Rd) activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS). The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37oC, for 60 min. For each assay, the results for the control group were: a) GSH = 3.52 ± 0.27 µM/g Hb; b) GSSG = 0.17 ± 0.03 µM/g Hb; c) GSH-Px = 19.60 ± 1.96 IU/g Hb; d) GSH-Rd = 3.13 ± 0.17 IU/g Hb; e) catalase = 394.9 ± 22.8 IU/g Hb; f) SOD = 5981 ± 375 IU/g Hb. The addition of 1 to 100 µM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 µM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.
Resumo:
Arsenic is a toxic substance. The amount of arsenic in waste water is a raising problem because of increasing mining industry. Arsenic is connected to cancers in areas where arsenic concentration in drinking water is higher than recommendations. The main object in this master’s thesis was to research how ferrous hydroxide waste material is adsorbed arsenic from ammonia containing waste water. In this master’s thesis there is two parts: theoretical and experimental part. In theoretical part harmful effects of arsenic, theory of adsorption, isotherms modeling of adsorption and analysis methods of arsenic are described. In experimental part adsorption capacity of ferrous hydroxide waste material and adsorption time with different concentrations of arsenic were studied. Waste material was modified with two modification methods. Based on experimental results the adsorption capacity of waste material was high. The problem with waste material was that at same time with arsenic adsorption sulfur was dissolving in solution. Waste material was purified from sulfur but purification methods were not efficient enough. Purification methods require more research.
Resumo:
Since cellulose is a linear macromolecule it can be used as a material for regenerated cellulose fiber products e.g. in textile fibers or film manufacturing. Cellulose is not thermoformable, thus the manufacturing of these regenerated fibers is mainly possible through dissolution processes preceding the regeneration process. However, the dissolution of cellulose in common solvents is hindered due to inter- and intra-molecular hydrogen bonds in the cellulose chains, and relatively high crystallinity. Interestingly at subzero temperatures relatively dilute sodium hydroxide solutions can be used to dissolve cellulose to a certain extent. The objective of this work was to investigate the possible factors that govern the solubility of cellulose in aqueous NaOH and the solution stability. Cellulose-NaOH solutions have the tendency to form a gel over time and at elevated temperature, which creates challenges for further processing. The main target of this work was to achieve high solubility of cellulose in aqueous NaOH without excessively compromising the solution stability. In the literature survey an overview of the cellulose dissolution is given and possible factors contributing to the solubility and solution properties of cellulose in aqueous NaOH are reviewed. Furthermore, the concept of solution rheology is discussed. In the experimental part the focus was on the characterization of the used materials and properties of the prepared solutions mainly concentrating on cellulose solubility and solution stability.
Resumo:
The presence of dietary fiber (DF) in the food matrix of some tropical fruits plays an important role in the release and absorption of its bioactive compounds, such as phenolic compounds (PCs). The aim of this study was to evaluate the effect of the DF fractions in mango cv. ‘Ataulfo’, papaya cv. ‘Maradol’ and pineapple cv. ‘Esmeralda’, on the bioaccessibility of their PCs and antioxidant capacity (AOXC) under an in vitro digestion model. The highest PCs content and AOXC was found in mango (274.30 mg GAE/100 g FW), followed by papaya (212 mg GAE//100 g FW), and pineapple (107.63 mg GAE/100 g FW), respectively. About 50% of the total PCs in all fruits was released at gastric phase, increasing closer to 60% at intestinal phase in mango and pineapple. However, the highest content of PCs associated to DF was found in mango (2.48 mg GAE/100 g FW) compared with papaya DF fractions (0.96 GAE/100 g FW) and pineapple (0.52 GAE/100 g FW). The presence of DF in mango, papaya and pineapple did not represent a major limitation on the bioaccessibility of its PCs according to the in vitro digestion model used in this study.