542 resultados para T-MAZE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure of rodents to an open elevated plus-maze (oEPM) elicits antinociception and increases plasma corticosterone levels. However, no studies have yet assessed the defensive behaviour repertoire of animals in this modified test. In Experiment 1, factor analysis was employed to characterise the behavioural profile of mice exposed to the oEPM. Experiments 2 and 3 assessed the effects of acute alprazolam (0.5-1.5. mg/kg; diazepam 0.5-1.5. mg/kg), pentylenetetrazole (10.0-30.0. mg/kg), yohimbine (2.0-6.0. mg/kg), mCPP (0.3-3.0. mg/kg), and acute and chronic fluoxetine (10.0-30.0. mg/kg) and imipramine (1.0-15.0. mg/kg) on behaviours identified in Experiment 1. The factor analyses revealed that behaviour in the oEPM can largely (77% total variance) be accounted for in terms of 3 factors: factor 1 ('. depth exploration'; e.g. head-dipping on the arms), factor 2 ('. cautious exploration of arms'; e.g. flatback approach), and factor 3 ('. risk assessment'; stretched attend postures - SAP). Experiments 2 and 3 showed that, over the dose range used, alprazolam selectively attenuated all measures of defensiveness. Similar, though more modest, effects were seen with diazepam. Confirming the intensity of the emotional response to the oEPM (nociceptive, endocrine and behavioural), relatively few significant behavioural changes were seen in response to the anxiogenic compounds tested. Although acute fluoxetine or imipramine treatment failed to modify behaviour in the oEPM, chronic fluoxetine (but not chronic imipramine) attenuated total flat back approach and increased head dipping outside the central square. Together, the results indicate that the oEPM induces behavioural defensive responses that are sensitive to alprazolam and chronic fluoxetine. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several reports have shown that the hippocampus plays an important role in different aspects of the emotional control. There is evidence that lesions in this structure cause behavioral disinhibition, with reduction of reactions expressing fear and anxiety. Thus, to portray the aptitude of cell therapy to abrogate injuries of hippocampal tissue, we examined the behavioral effects of bone marrow mononuclear cells (BMMCs) transplantation on C57BL/6 mice that had the hippocampus damaged by electrolytic lesion. For this purpose, mice received, seven days after bilateral electrolytic lesion in the dorsal hippocampus, culture medium or BMMCs expressing the enhanced green fluorescent protein (EGFP) transgene. One week after transplantation, animals were tested in the elevated plus-maze (EPM). On the whole, three assessment sessions in the EPM were carried out, with seven days separating each trial. Thirty-five days after the induction of injury, mice were sacrificed and their brains removed for immunohistochemistry. The behavioral evaluation showed that the hippocampal lesion caused disinhibition, an effect which was slightly lessened, from the second EPM test, in transplanted subjects. On the other hand, immunohistochemical data revealed an insignificant presence of EGFP+ cells inside the brains of injured mice. In view of such scenario, we hypothesized that the subtle rehabilitation of the altered behavior might be a result from a paracrine effect from the transplanted cells. This might have been caused by the release of bioactive factors capable of boosting endogenous recuperative mechanisms for a partial regaining of the hippocampal functions. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to determine the modulation of anxiolytic and panicolytic-like effects of diazepam by the hormonal cycle of female rats, male and female rats – the latter divided per estrous cycle phase (estrus, diestrus, metaestrus and proestrus) – were tested in the elevated T-maze, a behavioral model of panic and anxiety. Diazepam (0.5, 1.0 and 2.0 mg/kg) or saline solution was injected in individual animals that were submitted to one session in the elevated T-maze 25 min after drug/saline administration. The test consisted of three avoidance trials and one escape trial, separated by a 30 s interval, during which the animals were isolated in individual cages. The avoidance trials began with the animal being placed at the end of the maze's enclosed arm. The time necessary for the animal to leave the central square was considered as the response's latency. The trials that exceeded 300 s were considered as failures. Results demonstrate a decrease in the effects of diazepam in inhibitory avoidance (anxiety) trials in females in diestrus and proestrus, but no relation of gender or estrous cycle on diazepam effects on escape trials (fear). The results support the hypothesis that down-regulation of GABAA receptors by activation of nuclear estrogen receptors and induction of PKC-mediated GABAA receptor phosphorylation by activation of surface estrogen receptors in raphe neurons underlie the modulation of diazepam sensitivity by estrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several findings have pointed to the role of the dorsal periaqueductal gray (dPAG) serotonin 5-HT1A and 5-HT2(A-C) receptor subtypes in the modulation of defensive behavior in animals exposed to the elevated plus-maze (EPM). Besides displaying anxiety-like behavior, rodents also exhibit antinociception in the EPM. This study investigated the effects of intra-dPAG injections of 5-HT1A and 5-HT2B/2C receptor ligands on EPM-induced antinociception in mice. Male Swiss mice received 0.1 mu l intra-dPAG injections of vehicle, 5.6 and 10 nmol of 8-OHDPAT, a 5-HT1A receptor agonist (Experiment 1), or 0.01, 0.03 and 0.1 nmol of mCPP, a 5-HT2B/2C receptor agonist (Experiment 2). Five minutes later, each mouse received an intraperitoneal injection of 0.6% acetic acid (0.1 ml/10 g body weight; nociceptive stimulus) and was individually confined in the open (OA) or enclosed (EA) arms of the EPM for 5 min, during which the number of abdominal writhes induced by the acetic acid was recorded. While intra-dPAG injection of 8-OHDPAT did not change open-arm antinociception (OAR). mCPP (0.01 nmol) enhanced it. Combined injections of ketanserin (10 nmol/0.1 mu l), a 5-HT2A/2C receptor antagonist, and 0.01 nmol of mCPP (Experiment 3), selectively and completely blocked the OAR enhancement induced by mCPP. Although intra-dPAG injection of mCPP (0.01 nmol) also produced antinociception in EA-confined mice (Experiment 2), this effect was not confirmed in Experiment 3. Moreover, no other compound changed the nociceptive response in EA-confined animals. These results suggest that the 5-HT2C receptors located within the PAG play a role in this type of environmentally induced pain inhibition in mice. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the amygdala in the mediation of fear and anxiety has been extensively investigated. However, how the amygdala functions during the organization of the anxiety-like behaviors generated in the elevated plus maze (EPM) is still under investigation. The basolateral (BLA) and the central (CeA) nuclei are the main input and output stations of the amygdala. In the present study, we ethopharmacologically analyzed the behavior of rats subjected to the EPM and the tissue content of the monoamines dopamine (DA) and serotonin (5-HT) and their metabolites in the nucleus accumbens (NAc), dorsal hippocampus (DH), and dorsal striatum (DS) of animals injected with saline or midazolam (20 and 30 nmol/0.2 mu L) into the BLA or CeA. Injections of midazolam into the CeA, but not BLA, caused clear anxiolytic-like effects in the EPM. These treatments did not cause significant changes in 5-HT or DA contents in the NAc, DH, or DS of animals tested in the EPM. The data suggest that the anxiolytic-like effects of midazolam in the EPM also appear to rely on GABA-benzodiazepine mechanisms in the CeA, but not BLA, and do not appear to depend on 5-HT and DA mechanisms prevalent in limbic structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multiple memory systems theory proposes that the hippocampus and the dorsolateral striatum are the core structures of the spatial/relational and stimulus-response (S-R) memory systems, respectively. This theory is supported by double dissociation studies showing that the spatial and cue (S-R) versions of the Morris water maze are impaired by lesions in the dorsal hippocarnpus and dorsal striatum, respectively. In the present study we further investigated whether adult male Wistar rats bearing double and bilateral electrolytic lesions in the dorsal hippocampus and dorsolateral striatum were as impaired as rats bearing single lesions in just one of these structures in learning both versions of the water maze. Such a prediction, based on the multiple memory systems theory, was not confirmed. Compared to the controls, the animals with double lesions exhibited no improvement at all in the spatial version and learned the cued version very slowly. These results suggest that, instead of independent systems competing for holding control over navigational behaviour, the hippocampus and dorsal striatum both play critical roles in navigation based on spatial or cue-based strategies. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serotonin (5-HT), opioids and the dorsal periaqueductal grey (DPAG) have been implicated in the pathophysiology of panic disorder. In order to study 5-HT-opioid interaction, the opioid antagonist naloxone was injected either systemically (1 mg/kg, i.p.) or intra-DPAG (0.2 mu g/0.5 mu L) to assess its interference with the effect of chronic fluoxetine (10 mg/kg, i.p., daily for 21 days) or of intra-DPAG 5-HT (8 mu g/0.5 mu L). Drug effects were measured in the one-escape task of the rat elevated T-maze, an animal model of panic. Pretreatment with systemic naloxone antagonized the lengthening of escape latency caused by chronic fluoxetine, considered a panicolytic-like effect that parallels the drug's therapeutic response in the clinics. Pretreatment with naloxone injected intra-DPAG antagonized both the panicolytic effect of chronic fluoxetine as well as that of 5-HT injected intra-DPAG. Neither the performance of the inhibitory avoidance task in the elevated T-maze, a model of generalized anxiety nor locomotion measured in a circular arena was affected by the above drug treatments. These results indicate that the panicolytic effect of fluoxetine is mediated by endogenous opioids that are activated by 5-HT in the DPAG. They also allow reconciliation between the serotonergic and opioidergic hypotheses of panic disorder pathophysiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We would like to thank FAPESP for funding this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat of a generalized anxiety- and a panic-related defensive response, i.e., inhibitory avoidance and escape, respectively. Facilitation of inhibitory avoidance, suggesting an anxiogenic effect, was detected in male Wistar rats (200-220 g) tested in the elevated T-maze 30 min after DPAG electrical stimulation (current generated by a sine-wave stimulator, frequency at 60 Hz) or after local microinjection of the GABA A receptor antagonist bicuculline (5 pmol). Previous electrical (5, 15, 30 min, or 24 h before testing) or chemical stimulation of this midbrain area did not affect escape performance in the elevated T-maze or locomotion in an open-field. No change in the two behavioral tasks measured by the elevated T-maze was observed after repetitive (3 trials) electrical stimulation of the DPAG. The results indicate that activation of the DPAG caused a short-lived, but selective, increase in defensive behaviors associated with generalized anxiety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While many tend to think of memory systems in the brain as a single process, in reality several experiments have supported multiple dissociations of different forms of learning, such as spatial learning and response learning. In both humans and rats, the hippocampus has long been shown to be specialized in the storage of spatial and contextual memory whereas the striatum is associated with motor responses and habitual behaviors. Previous studies have examined how damage to hippocampus or striatum has affected the acquisition of either a spatial or response navigation task. However even in a very familiar environment organisms must continuously switch between place and response strategies depending upon circumstances. The current research investigates how these two brain systems interact under normal conditions to produce navigational behavior. Rats were tested using a task developed by Jacobson and colleagues (2006) in which the two types of navigation could be controlled and studied simultaneously. Rats were trained to solve a plus maze using both a spatial and a response strategy. A cue (flashing light) was employed to indicate the correct strategy on a given trial. When no light was present, the animals were rewarded for making a 90º right turn (motor response). When the light was on, the animals were rewarded for going to a specific goal location (place strategy). After learning the task, animals had a sham surgery or dorsal striatum or hippocampus damaged. In order to investigate the individual role of each brain system and evaluate whether these brain regions compete or cooperate for control over strategy, we utilized a within-animal comparisons. The configuration of the maze allowed for the comparison of behavior in individual animals before and after specific brain areas were damaged. Animals with hippocampal lesions showed selective deficits on place trials after surgery and learned the reversal of the motor response more rapidly than striatal lesioned or sham rats. Unlike previous findings regarding maze learning, animals with striatal lesions showed deficits in both place and response trials and had difficulty learning the reversal of motor response. Therefore, the effects of lesions on the ability to switch back and forth between strategies were more complex than previously suggested. This work may reveal important new insight on the integration of hippocampal and striatal learning systems, and facilitate a better understanding of the brain dynamics underlying similar navigational processes in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerable evidence suggests that central cholinergic neurons participate in either acquisition, storage or retrieval of information. Experiments were designed to evaluate information processing in mice following either reversible or irreversible impairment in central cholinergic activity. The cholinergic receptor antagonists, atropine and methylatropine were used to reversibly inhibit cholinergic transmission. Irreversible impairment in central cholinergic function was achieved by central administration of the cholinergic-specific neurotoxins, N-ethyl-choline aziridinium (ECA) and N-ethyl-acetylcholine aziridinium (EACA).^ ECA and EACA appear to act by irreversible inhibition of high affinity choline uptake (proposed rate-limiting step in acetylcholine synthesis). Intraventricular administration of ECA or EACA produced persistent reduction in hippocampal choline acetyltransferase activity. Other neuronal systems and brain regions showed no evidence of toxicity.^ Mice treated with either ECA or EACA showed behavioral deficits associated with cholinergic dysfunction. Passive avoidance behavior was significantly impaired by cholinotoxin treatment. Radial arm maze performance was also significantly impaired in cholinotoxin-treated animals. Deficits in radial arm maze performance were transient, however, such that rapid and apparent complete behavioral recovery was seen during retention testing. The centrally active cholinergic receptor antagonist atropine also caused significant impairment in radial arm maze behavior, while equivalent doses of methylatropine were without effect.^ The relative effects of cholinotoxin and receptor antagonist treatment on short-term (working) memory and long-term (reference) memory in radial arm maze behavior were examined. Maze rotation studies indicated that there were at least two different response strategies which could result in accurate maze performance. One strategy involved the use of response algorithms and was considered to be a function of reference memory. Another strategy appeared to be primarily dependent on spatial working memory. However, all behavioral paradigms with multiple trails have reference memory requirements (i.e. information useful over all trials). Performance was similarly affected following either cholinotoxin or anticholinergic treatment, regardless of the response strategy utilized. In addition, rates of behavioral recovery following cholinotoxin treatment were similar between response groups. It was concluded that both cholinotoxin and anticholinergic treatment primarily resulted in impaired reference memory processes. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Head trauma leading to concussion and electroconvulsive shock (ECS) in humans causes amnesia for events that occurred shortly before the injury (retrograde amnesia). The present experiment investigated the amnesic effect of lidocaine and ECS in 25 rats trained on a working memory version of the Morris water task. Each day, the escape platform was moved to a new location; learning was evidenced by a decrease in the latency to find the platform from the first to the second trial. "Consolidation" of this newly encoded spatial engram was disrupted by bilateral inactivation of the dorsal hippocampus with 1 microliter of 4% lidocaine applied as soon as possible after the first trial. When trial 2 was given after recovery from the lidocaine (30 min after the injection), a normal decrease in latency indicated that the new engram was not disrupted. When trial 2 was given under the influence of lidocaine (5 min after injection), absence of latency decrease demonstrated both the success of the inactivation and the importance of hippocampus for the task. To examine the role of events immediately after learning, ECS (30 or 100 mA, 50 Hz, 1.2 sec) was applied 0 sec to 45 sec after a single escape to the new platform location. A 2-h delay between ECS and trial 2 allowed the effects of ECS to dissipate. ECS applied 45 sec or 30 sec after trial 1 caused no retrograde amnesia: escape latencies on trial 2 were the same as in control rats. However, ECS applied 0 sec or 15 sec after trial 1 induced clear retrograde amnesia: escape latencies on trial 2 were no shorter than on trial 1. It is concluded that the consolidation of a newly formed memory for spatial location can only be disrupted by ECS within 30 sec after learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography.