994 resultados para Superconducting quantum interference devices
Resumo:
A crescente tendencia no acesso móvel tem sido potenciada pela tecnologia IEEE 802.11. Contudo, estas redes têm alcance rádio limitado. Para a extensão da sua cobertura é possível recorrer a redes emalhadas sem fios baseadas na tecnologia IEEE 802.11, com vantagem do ponto de vista do custo e da flexibilidade de instalação, face a soluções cabladas. Redes emalhadas sem fios constituídas por nós com apenas uma interface têm escalabilidade reduzida. A principal razão dessa limitação deve-se ao uso do mecanismo de acesso ao meio partilhado Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) em topologias multi-hop. Especificamente, o CSMA/CA não evita o problema do nó escondido levando ao aumento do número de colisões e correspondente degradação de desempenho com impacto direto no throughput e na latência. Com a redução da tecnologia rádio torna-se viável a utilização de múltiplos rádios por nó, sem com isso aumentar significativamente o custo da solução final de comunicações. A utilização de mais do que um rádio por nó de comuniações permite superar os problemas de desempenho inerentes ás redes formadas por nós com apenas um rádio. O objetivo desta tese, passa por desenvolver uma nova solução para redes emalhadas multi-cana, duar-radio, utilizando para isso novos mecanismos que complementam os mecanismos definidos no IEEE 802.11 para o estabelecimento de um Basic Service Set (BSS). A solução é baseada na solução WiFIX, um protocolo de routing para redes emalhadas de interface única e reutiliza os mecanismos já implementados nas redes IEEE 802.11 para difundir métricas que permitam à rede escalar de forma eficaz minimizando o impacto na performance. A rede multi-hop é formada por nós equipados com duas interfaces, organizados numa topologia hierárquica sobre múltiplas relações Access Point (AP) – Station (STA). Os resultados experimentais obtidos mostram a eficácia e o bom desempenho da solução proposta face à solução WiFIX original.
Resumo:
High-resolution X-ray diffractometry is used to probe the nature of a diffraction-peak broadening previously noticed in quantum dots (QDs) systems with freestanding InAs islands on top of GaAs (001) substrates [Freitas et al., Phys. Status Solidi (A) 204, 2548 (2007)]. The procedure is hence extended to further investigate the capping process of InAs/GaAs QDs. A direct correlation is established between QDs growth rates and misorientation of lattice-planes at the samples surfaces. This effect provides an alternative too] for studying average strain fields on QDs systems in standard triple axis diffractometers running on X-ray tube sources, which are much more common than synchrotron facilities. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We propose integrated optical structures that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space (quantum state with a well-defined particle number) representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio of 75 dB after a propagation distance of 8mm inside seven coupled waveguides. Moreover, we demonstrate that, a judicious choice of the nonreciprocity in this same geometry can lead to perfect polarization splitting.
Resumo:
The present study reports for the first time the optimization of the infrared (1523 nm) to near-infrared (980 nm) upconversion quantum yield (UC-QY) of hexagonal trivalent erbium doped sodium yttrium fluoride (β-NaYF4:Er3+) in a perfluorocyclobutane (PFCB) host matrix under monochromatic excitation. Maximum internal and external UC-QYs of 8.4% ± 0.8% and 6.5% ± 0.7%, respectively, have been achieved for 1523 nm excitation of 970 ± 43 Wm−2 for an optimum Er3+ concentration of 25 mol% and a phosphor concentration of 84.9 w/w% in the matrix. These results correspond to normalized internal and external efficiencies of 0.86 ± 0.12 cm2 W−1 and 0.67 ± 0.10 cm2 W−1, respectively. These are the highest values ever reported for β-NaYF4:Er3+ under monochromatic excitation. The special characteristics of both the UC phosphor β-NaYF4:Er3+ and the PFCB matrix give rise to this outstanding property. Detailed power and time dependent luminescence measurements reveal energy transfer upconversion as the dominant UC mechanism.
Resumo:
We show how a quantum property, a geometric phase, associated with scattering states can be exhibited in nanoscale electronic devices. We propose an experiment to use interference to directly measure the effect of this geometric phase. The setup involves a double-path interferometer, adapted from that used to measure the phase evolution of electrons as they traverse a quantum dot (QD). Gate voltages on the QD could be varied cyclically and adiabatically, in a manner similar to that used to observe quantum adiabatic charge pumping. The interference due to the geometric phase results in oscillations in the current collected in the drain when a small bias across the device is applied. We illustrate the effect with examples of geometric phases resulting from both Abelian and non-Abelian gauge potentials.
Resumo:
The study of transport processes in low-dimensional semiconductors requires a rigorous quantum mechanical treatment. However, a full-fledged quantum transport theory of electrons (or holes) in semiconductors of small scale, applicable in the presence of external fields of arbitrary strength, is still not available. In the literature, different approaches have been proposed, including: (a) the semiclassical Boltzmann equation, (b) perturbation theory based on Keldysh's Green functions, and (c) the Quantum Boltzmann Equation (QBE), previously derived by Van Vliet and coworkers, applicable in the realm of Kubo's Linear Response Theory (LRT). ^ In the present work, we follow the method originally proposed by Van Wet in LRT. The Hamiltonian in this approach is of the form: H = H 0(E, B) + λV, where H0 contains the externally applied fields, and λV includes many-body interactions. This Hamiltonian differs from the LRT Hamiltonian, H = H0 - AF(t) + λV, which contains the external field in the field-response part, -AF(t). For the nonlinear problem, the eigenfunctions of the system Hamiltonian, H0(E, B), include the external fields without any limitation on strength. ^ In Part A of this dissertation, both the diagonal and nondiagonal Master equations are obtained after applying projection operators to the von Neumann equation for the density operator in the interaction picture, and taking the Van Hove limit, (λ → 0, t → ∞, so that (λ2 t)n remains finite). Similarly, the many-body current operator J is obtained from the Heisenberg equation of motion. ^ In Part B, the Quantum Boltzmann Equation is obtained in the occupation-number representation for an electron gas, interacting with phonons or impurities. On the one-body level, the current operator obtained in Part A leads to the Generalized Calecki current for electric and magnetic fields of arbitrary strength. Furthermore, in this part, the LRT results for the current and conductance are recovered in the limit of small electric fields. ^ In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices. ^
Resumo:
Electronic noise has been investigated in AlxGa1−x N/GaN Modulation-Doped Field Effect Transistors (MODFETs) of submicron dimensions, grown for us by MBE (Molecular Beam Epitaxy) techniques at Virginia Commonwealth University by Dr. H. Morkoç and coworkers. Some 20 devices were grown on a GaN substrate, four of which have leads bonded to source (S), drain (D), and gate (G) pads, respectively. Conduction takes place in the quasi-2D layer of the junction (xy plane) which is perpendicular to the quantum well (z-direction) of average triangular width ∼3 nm. A non-doped intrinsic buffer layer of ∼5 nm separates the Si-doped donors in the AlxGa1−xN layer from the 2D-transistor plane, which affords a very high electron mobility, thus enabling high-speed devices. Since all contacts (S, D, and G) must reach through the AlxGa1−xN layer to connect internally to the 2D plane, parallel conduction through this layer is a feature of all modulation-doped devices. While the shunting effect may account for no more than a few percent of the current IDS, it is responsible for most excess noise, over and above thermal noise of the device. ^ The excess noise has been analyzed as a sum of Lorentzian spectra and 1/f noise. The Lorentzian noise has been ascribed to trapping of the carriers in the AlxGa1−xN layer. A detailed, multitrapping generation-recombination noise theory is presented, which shows that an exponential relationship exists for the time constants obtained from the spectral components as a function of 1/kT. The trap depths have been obtained from Arrhenius plots of log (τT2) vs. 1000/T. Comparison with previous noise results for GaAs devices shows that: (a) many more trapping levels are present in these nitride-based devices; (b) the traps are deeper (farther below the conduction band) than for GaAs. Furthermore, the magnitude of the noise is strongly dependent on the level of depletion of the AlxGa1−xN donor layer, which can be altered by a negative or positive gate bias VGS. ^ Altogether, these frontier nitride-based devices are promising for bluish light optoelectronic devices and lasers; however, the noise, though well understood, indicates that the purity of the constituent layers should be greatly improved for future technological applications. ^
Resumo:
The study of transport processes in low-dimensional semiconductors requires a rigorous quantum mechanical treatment. However, a full-fledged quantum transport theory of electrons (or holes) in semiconductors of small scale, applicable in the presence of external fields of arbitrary strength, is still not available. In the literature, different approaches have been proposed, including: (a) the semiclassical Boltzmann equation, (b) perturbation theory based on Keldysh's Green functions, and (c) the Quantum Boltzmann Equation (QBE), previously derived by Van Vliet and coworkers, applicable in the realm of Kubo's Linear Response Theory (LRT). In the present work, we follow the method originally proposed by Van Vliet in LRT. The Hamiltonian in this approach is of the form: H = H°(E, B) + λV, where H0 contains the externally applied fields, and λV includes many-body interactions. This Hamiltonian differs from the LRT Hamiltonian, H = H° - AF(t) + λV, which contains the external field in the field-response part, -AF(t). For the nonlinear problem, the eigenfunctions of the system Hamiltonian, H°(E, B) , include the external fields without any limitation on strength. In Part A of this dissertation, both the diagonal and nondiagonal Master equations are obtained after applying projection operators to the von Neumann equation for the density operator in the interaction picture, and taking the Van Hove limit, (λ → 0 , t → ∞ , so that (λ2 t)n remains finite). Similarly, the many-body current operator J is obtained from the Heisenberg equation of motion. In Part B, the Quantum Boltzmann Equation is obtained in the occupation-number representation for an electron gas, interacting with phonons or impurities. On the one-body level, the current operator obtained in Part A leads to the Generalized Calecki current for electric and magnetic fields of arbitrary strength. Furthermore, in this part, the LRT results for the current and conductance are recovered in the limit of small electric fields. In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices.
Resumo:
Interference lithography can create large-area, defect-free nanostructures with unique optical properties. In this thesis, interference lithography will be utilized to create photonic crystals for functional devices or coatings. For instance, typical lithographic processing techniques were used to create 1, 2 and 3 dimensional photonic crystals in SU8 photoresist. These structures were in-filled with birefringent liquid crystal to make active devices, and the orientation of the liquid crystal directors within the SU8 matrix was studied. Most of this thesis will be focused on utilizing polymerization induced phase separation as a single-step method for fabrication by interference lithography. For example, layered polymer/nanoparticle composites have been created through the one-step two-beam interference lithographic exposure of a dispersion of 25 and 50 nm silica particles within a photopolymerizable mixture at a wavelength of 532 nm. In the areas of constructive interference, the monomer begins to polymerize via a free-radical process and concurrently the nanoparticles move into the regions of destructive interference. The holographic exposure of the particles within the monomer resin offers a single-step method to anisotropically structure the nanoconstituents within a composite. A one-step holographic exposure was also used to fabricate self- healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to sequester an isocyanate monomer within an acrylate matrix. Due to the periodic modulation of the index of refraction between the monomer and polymer, the coating can reflect a desired wavelength, allowing for tunable coloration. When the coating is scratched, polymerization of the liquid isocyanate is catalyzed by moisture in air; if the indices of the two polymers are matched, the coatings turn transparent after healing. Interference lithography offers a method of creating multifunctional self-healing coatings that readout when damage has occurred.