940 resultados para Super resolution near field structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical analyses of x-ray diffraction phase contrast imaging and near field phase retrieval method are presented. A new variant of the near field intensity distribution is derived with the optimal phase imaging distance and spatial frequency of object taken into account. Numerical examples of phase retrieval using simulated data are also given. On the above basis, the influence of detecting distance and polychroism of radiation on the phase contrast image and the retrieved phase distribution are discussed. The present results should be useful in the practical application of in-line phase contrast imaging.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hexagonal array not only is a nature-preferred pattern but also is widely used in optoelectronical materials and devices. We report a simple method of hexagonal array illumination based on the Talbot effect that has a theoretical efficiency of 100%. An experimental efficiency of 90.6% with a binary phase (0, pi) hexagonal grating is given. This method should be highly interesting for applications of hexagonal array illumination in optical devices as well as in other hexagonal cells. (C) 2002 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to realize super-resolution in the 4Pi-confocal systems, the annular binary pure phase filter is designed with the vector diffraction theory. The relations between the super-resolved parameters, such as S, G(T), G(A), and the radial position theta(i) of each zone, are obtained. For simple illumination of the design procedure, three-zone binary pure phase filters are studied, and several numerical simulation results show that in the 4Pi-confocal system with the properly designed binary pure phase filter the super-resolution can be realized with low sidelobes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been described that the near-field images of a high-density grating at the half self-imaging distance could be different for TE and TM polarization states. We propose that the phases of the diffraction orders play an important role in such polarization dependence. The view is verified through the coincidence of the numerical result of finite-difference time-domain method and the reconstructed results from the rigorous coupled-wave analysis. Field distributions of TE and TM polarizations are given numerically for a grating with period d = 2.3 lambda, which are verified through experiments with the scanning near-field optical microscopy technique. The concept of phase interpretation not only explains the polarization dependence at the half self-imaging distance of gratings with a physical view, but also, it could be widely used to describe the near-field diffraction of a variety of periodic diffractive optical elements whose feature size comparable to the wavelength. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We proposed a novel method to realize the readout of super-resolution pits by using a super-resolution reflective film to replace the reflective layer of the conventional ROM. At the same time, by using Sb as the super-resolution reflective layer and SiN as a dielectric layer, the super-resolution pits with diameters of 380 nm were read out by a setup whose laser wavelength is 632.8 nm and numerical aperture is 0.40. In addition, the influence of the Sb thin film thickness on the readout signal was investigated, the results showed that the optimum Sb thin film thickness is 28 to 30 nm, and the maximum CNR is 38 to 40 dB. (C) 2002 Society of Photo-Optical Instrumentation Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel read-only memory (ROM) disk with an AgOx mask layer was proposed and studied in this letter. The AgOx films sputtered on the premastered substrates, with pits depth of 50 nm and pits length of 380 nm, were studied by an atomic force microscopy. The transmittances of these AgOx films were also measured by a spectrophotometer. Disk measurement was carried out by a dynamic setup with a laser wavelength of 632.8 nm and a lens numerical aperture (NA) of 0.40. The readout resolution limit of this setup was λ/(4NA) (400 nm). Results showed that the super-resolution readout happened only when the oxygen flow ratios were at suitable values for these disks. The best super-resolution performance was achieved at the oxygen flow ratio of 0.5 with the smoothest film surface. The super-resolution readout mechanism of these ROM disks was analyzed as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the finite-difference-time-domain method, the near-field optical distribution and properties of Sb thin film thermal lens are calculated and simulated. The results show as follows. Within the near-field distance to the output plane of thermal lens, the spot size is approximately 100 nm, and its intensity is greatly enhanced, which is higher than that of incident light. The spot shape gradually changes from ellipse to round at the distance of more than 12 nm to the output plane. The above-simulated results are further demonstrated by the static optical recording experiment. (C) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In laser applications, the size of the focus spot can be reduced beyond the diffraction limit with a thin film of strong nonlinear optical Kerr effect. We present a concise theoretical simulation of the device. The origin of the super-resolution is found to be mainly from the reshaping effect due to the strongly nonlinear refraction mediated multi-interference inside the thin film. In addition, both diffraction and self-focusing effects have been explored and found negligible for highly refractive and ultrathin films in comparison with the reshaping effect. Finally, the theoretic model has been verified in experiments with single Ge2Sb2Te5 film and SiN/Si/SiN/Ge2Sb2Te2 multilayer structures. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Super-resolution filters based on a Gaussian beam are proposed to reduce the focusing spot in optical data storage systems. Both of amplitude filters and pure-phase filters are designed respectively to gain the desired intensity distributions. Their performances are analysed and compared with those based on plane wave in detail. The energy utilizations are presented. The simulation results show that our designed super-resolution filters are favourable for use in optical data storage systems in terms of performance and energy utilization.