918 resultados para Strongly Semantic Information
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this paper is to show a cognitive semantic investigation on the idea of expectation, defined as a mental construct which organizes the thinking and works as specific motivation in the process of communication. Expectation is an idea that may be created in the speaker's or in the listener's mind. It may be verbalized or not. Its semantic information may not be realized in real life, bringing frustration to communication. This study of expectation suggested that it is useful to have a theory to explain what other approaches left over. The working methodology focused in the gathering of data related to the phenomenon and the procedures to explain them inside a cognitive approach. The utterances are directly dependent of how the mind words. Therefore, studying speech we can have an access to people's mind. The idea of expectation may be interpreted under different traditional semantic labels. However, there are some peculiarities that can be explained only by a cognitive approach to language. We find words and phrases in the languages which reveal the presence of an expectation, such as "I think that...", "there has been an expectation about..." All answers are expected to fulfill an expectation. This investigation brought evidence that the mental expectation is essential to the act of communication. Therefore, the study of expectation in languages and in people's mind is important for the researches on cognitive semantics.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Research on image processing has shown that combining segmentation methods may lead to a solid approach to extract semantic information from different sort of images. Within this context, the Normalized Cut (NCut) is usually used as a final partitioning tool for graphs modeled in some chosen method. This work explores the Watershed Transform as a modeling tool, using different criteria of the hierarchical Watershed to convert an image into an adjacency graph. The Watershed is combined with an unsupervised distance learning step that redistributes the graph weights and redefines the Similarity matrix, before the final segmentation step using NCut. Adopting the Berkeley Segmentation Data Set and Benchmark as a background, our goal is to compare the results obtained for this method with previous work to validate its performance.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Metalinguistic skill is the ability to reflect upon language as an object of thought. Amongst metalinguistic skills, two seem to be associated with reading and spelling: morphological awareness and phonological awareness. Phonological awareness is the ability of reflecting upon the phonemes that compose words, and morphological awareness is the ability of reflecting upon the morphemes that compose the words. The latter seems to be particularly important for reading comprehension and contextual reading, as beyond phonological information, syntactic and semantic information are required. This study is set to investigate - with a longitudinal design - the relation between those abilities and contextual reading measured by the Cloze test. The first part of the study explores the relationship between morphological awareness tasks and Cloze scores through simple correlations and, in the second part, the specificity of such relationship was inquired using multiple regressions. The results give some support to the hypothesis that morphological awareness offers an independent contribution regarding phonological awareness to contextual reading in Brazilian Portuguese.
Resumo:
Internet of Energy è un progetto di ricerca europeo nato con lo scopo di sviluppare infrastrutture hardware e software volte a introdurre la mobilità elettrica veicolare nei moderni contesti urbani. È stato oggetto di tesi di Federco Montori il quale ha sviluppato un primo prototipo di piattaforma comprendente un servizio cittadino di gestione delle ricariche, un’applicazione mobile che vi interagiva e infine un simulatore necessario al test della piattaforma. Nel corso di oltre un anno di sviluppo ho riscritto tutte le componenti software che costituivano il progetto ampliandone notevolmente le funzionalità, rendendole modulari e ben ingegnerizzate. Del progetto originario è stata ereditata l’architettura ontology-based basata sullo scambio di informazioni tramite il Semantic Information Broker (SIB). Il mio contributo è iniziato nel 2012 con la riscrittura dell’applicazione mobile che inizialmente funzionava solo in presenza del simulatore. Attualmente permette di interfacciarsi a un veicolo reale tramite la tecnologia Blue&Me di Fiat. Questo approccio è stato reso possibile grazie all’opportunità offerta dal Centro Ricerche Fiat, che ci ha permesso di testare presso loro sede l’applicazione mobile su un prototipo di Daily elettrico. Ho inoltre introdotto lo studio del profilo altimetrico e consumo energetico che separa il possessore dello smartphone da una determinata destinazione. Nel 2013 ho deciso di riscrivere il Servizio Cittadino per renderlo conforme a un nuovo protocollo di prenotazione. Ho colto l’occasione per rendere il servizio altamente performante grazie a tecniche quali: pool di thread, pool di oggetti e caching. Infine a cavallo tra il 2013 e il 2014 ho riscritto il simulatore al fine di ottimizzare il consumo di risorse, velocizzare il setup delle simulazioni e sopratutto renderlo più conforme alla realtà. Questo lavoro ha permesso di avere una piattaforma software che permette di valutare realisticamente gli scenari di mobilità elettrica veicolare.
Resumo:
Realizzazione di un database semantico in Java a partire da una sua versione in tecnologia OSGI. La trattazione è organizzata come segue: nel primo capitolo verranno introdotte nozioni generali sullo scenario di rilevanza e le tecnologie. Nel secondo capitolo si parlerà della SIB-O, introducendone l’architettura e le funzionalità. Il terzo capitolo descriverà il lavoro svolto ed infine il quarto capitolo riporterà i risultati di test di performance allo scopo di validare il lavoro svolto e caratterizzare l’efficienza dei prodotti software realizzati.
Resumo:
Il software Smart-M3, ereditato dal progetto europeo SOFIA, conclusosi nel 2011, permette di creare una piattaforma d'interoperabilità indipendente dal tipo di dispositivi e dal loro dominio di utilizzo e che miri a fornire un Web Semantico di informazioni condivisibili fra entità software e dispositivi, creando ambienti intelligenti e collegamenti tra il mondo reale e virtuale. Questo è un campo in continua ascesa grazie al progressivo e regolare sviluppo sia della tecnologia, nell'ambito della miniaturizzazione dei dispositivi, che delle potenzialità dei sistemi embedded. Questi sistemi permettono, tramite l'uso sempre maggiore di sensori e attuatori, l'elaborazione delle informazioni provenienti dall’esterno. È evidente, come un software di tale portata, possa avere una molteplicità di applicazioni, alcune delle quali, nell’ambito della Biomedica, può esprimersi nella telemedicina e nei sistemi e-Heath. Per e-Health si intende infatti l’utilizzo di strumenti basati sulle tecnologie dell'informazione e della comunicazione, per sostenere e promuovere la prevenzione, la diagnosi, il trattamento e il monitoraggio delle malattie e la gestione della salute e dello stile di vita. Obiettivo di questa tesi è fornire un set di dati che mirino ad ottimizzare e perfezionare i criteri nella scelta applicativa di tali strutture. Misureremo prestazioni e capacità di svolgere più o meno velocemente, precisamente ed accuratamente, un particolare compito per cui tale software è stato progettato. Ciò si costruisce sull’esecuzione di un benchmark su diverse implementazioni di Smart-M3 ed in particolare sul componente centrale denominato SIB (Semantic Information Broker).
Resumo:
Semantic Web technologies offer a promising framework for integration of disparate biomedical data. In this paper we present the semantic information integration platform under development at the Center for Clinical and Translational Sciences (CCTS) at the University of Texas Health Science Center at Houston (UTHSC-H) as part of our Clinical and Translational Science Award (CTSA) program. We utilize the Semantic Web technologies not only for integrating, repurposing and classification of multi-source clinical data, but also to construct a distributed environment for information sharing, and collaboration online. Service Oriented Architecture (SOA) is used to modularize and distribute reusable services in a dynamic and distributed environment. Components of the semantic solution and its overall architecture are described.
Resumo:
Software evolution, and particularly its growth, has been mainly studied at the file (also sometimes referred as module) level. In this paper we propose to move from the physical towards a level that includes semantic information by using functions or methods for measuring the evolution of a software system. We point out that use of functions-based metrics has many advantages over the use of files or lines of code. We demonstrate our approach with an empirical study of two Free/Open Source projects: a community-driven project, Apache, and a company-led project, Novell Evolution. We discovered that most functions never change; when they do their number of modifications is correlated with their size, and that very few authors who modify each; finally we show that the departure of a developer from a software project slows the evolution of the functions that she authored.
Resumo:
We present the data structures and algorithms used in the approach for building domain ontologies from folksonomies and linked data. In this approach we extracts domain terms from folksonomies and enrich them with semantic information from the Linked Open Data cloud. As a result, we obtain a domain ontology that combines the emergent knowledge of social tagging systems with formal knowledge from Ontologies.
Resumo:
Managing large medical image collections is an increasingly demanding important issue in many hospitals and other medical settings. A huge amount of this information is daily generated, which requires robust and agile systems. In this paper we present a distributed multi-agent system capable of managing very large medical image datasets. In this approach, agents extract low-level information from images and store them in a data structure implemented in a relational database. The data structure can also store semantic information related to images and particular regions. A distinctive aspect of our work is that a single image can be divided so that the resultant sub-images can be stored and managed separately by different agents to improve performance in data accessing and processing. The system also offers the possibility of applying some region-based operations and filters on images, facilitating image classification. These operations can be performed directly on data structures in the database.
Resumo:
This paper proposes the use of Factored Translation Models (FTMs) for improving a Speech into Sign Language Translation System. These FTMs allow incorporating syntactic-semantic information during the translation process. This new information permits to reduce significantly the translation error rate. This paper also analyses different alternatives for dealing with the non-relevant words. The speech into sign language translation system has been developed and evaluated in a specific application domain: the renewal of Identity Documents and Driver’s License. The translation system uses a phrase-based translation system (Moses). The evaluation results reveal that the BLEU (BiLingual Evaluation Understudy) has improved from 69.1% to 73.9% and the mSER (multiple references Sign Error Rate) has been reduced from 30.6% to 24.8%.
Resumo:
Recently, the Semantic Web has experienced signi�cant advancements in standards and techniques, as well as in the amount of semantic information available online. Even so, mechanisms are still needed to automatically reconcile semantic information when it is expressed in di�erent natural languages, so that access to Web information across language barriers can be improved. That requires developing techniques for discovering and representing cross-lingual links on the Web of Data. In this paper we explore the different dimensions of such a problem and reflect on possible avenues of research on that topic.