876 resultados para Spray coverage
Resumo:
The high-pressure spray characteristics of biofuels, specifically, Pongamia oil and its blends with diesel are studied for various gas pressures. Two single-hole solenoid injectors with nozzle diameters of 200 and 260 mu m are used along with a high-pressure common-rail direct-injection system to inject fuel into a high-pressure spray visualization chamber. The spray structure is characterized using a high-speed laser-based shadowgraphy technique. The spray structure of Pongamia oil revealed the presence of an intact liquid core at low gas pressure. At high gas pressures, the spray atomization of the Pongamia oil showed marked improvement. The spray tip penetration of Pongamia oil and its blends with diesel is higher compared to that of diesel for all test conditions. The spray cone angle of Pongamia oil and 50% Pongamia oil blend with diesel is lower as compared to that of diesel. Both these observations are attributed to the presence of large droplets carrying higher momentum in oil and blend. The droplet size is measured at an injection pressure of 1000 bar and gas pressure of 30 bar at 25 mm below the nozzle tip using the particle/droplet image.analysis (PDIA) method. The droplet size measurements have shown that the Sauter mean diameter (SMD) in the spray core of Pongamia oil is more than twice that of diesel. The spray tip penetration of the 20% blend of Pongamia with diesel (P20) is similar to that of diesel but the SMD is 50% higher. Based on experimental data, appropriate spray tip penetration correlation is proposed for the vegetable oil fuels such as Pongamia.
Resumo:
We present results of high pressure spray characterization of Straight Vegetable Oils (SVOs) which are potential diesel fuel substitutes. SVO sprays are visualized at high injection pressures (up to 1600 bar) to study their atomization characteristics. Spray structure studies are reported for the first time for Jatropha and Pongamia vegetable oils, under atmospheric conditions. Jatropha and Pongamia SVO sprays are found to be poorly atomized and intact liquid cores are observed even at an injection pressure of 1600 bar. Non-Newtonian behavior of Jatropha and Pongamia oil is shown to be the reason for observed spray structure. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Pure and tin doped zinc oxide (Sn:ZnO) thin films were prepared for the first time by NSP technique using aqueous solutions of zinc acetate dehydrate, tin (IV) chloride fendahydrate and methanol. X-ray diffraction patterns confirm that the films are polycrystalline in nature exhibiting hexagonal wurtzite type, with (0 0 2) as preferred orientation. The structural parameters such as lattice constant ('a' and `c'), crystallite size, dislocation density, micro strain, stress and texture coefficient were calculated from X-ray diffraction studies. Surface morphology was found to be modified with increasing Sn doping concentration. The ZnO films have high transmittance 85% in the visible region, and the transmittance is found to be decreased with the increase of Sn doping concentration. The corresponding optical band gap decreases from 3.25 to 3.08 eV. Room temperature photoluminescence reveals the sharp emission of strong UV peak at 400 nm (3.10 eV) and a strong sharp green luminescence at 528 nm (2.34 eV) in the Sn doped ZnO films. The electrical resistivity is found to be 10(6) Omega-cm at higher temperature and 10(5) Omega-cm at lower temperature. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This work reports the measured spray structure and droplet size distributions of ethanol-gasoline blends for a low-pressure, multi-hole, port fuel injector (PFI). This study presents previously unavailable data for this class of injectors which are widely used in automotive applications. Specifically, gasoline, ethanol, and gasoline-ethanol blends containing 10%, 20% and 50% ethanol were studied using laser backlight imaging, and particle/droplet image analysis (PDIA) techniques. The fuel mass injected, spray structure and tip penetrations, droplet size distributions, and Sauter mean diameter were determined for the blends, at two different injection pressures. Results indicate that the gasoline and ethanol sprays have similar characteristics in terms of spray progression and droplet sizes in spite of the large difference in viscosity. It appears that the complex mode of atomization utilized in these injectors involving interaction of multiple fuel jets is fairly insensitive to the fuel viscosity over a range of values. This result has interesting ramifications for existing gasoline fuel systems which need to handle blends and even pure ethanol, which is one of the renewable fuels of the future. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with an experimental study of the breakup characteristics of water emanating from hollow cone hydraulic injector nozzles induced by pressure-swirling. The experiments were conducted using two nozzles with different orifice diameters 0.3 mm and 0.5 mm and injection pressures (0.3-4 MPa) which correspond to Rep = 7000-26 000. Two types of laser diagnostic techniques were utilized: shadowgraph and phase Doppler particle anemometry for a complete study of the atomization process. Measurements that were made in the spray in both axial and radial directions indicate that both velocity and average droplet diameter profiles are highly dependent on the nozzle characteristics, Weber number and Reynolds number. The spatial variation of diameter and velocity arises principally due to primary breakup of liquid films and subsequent secondary breakup of large droplets due to aerodynamic shear. Downstream of the nozzle, coalescence of droplets due to collision was also found to be significant. Different types of liquid film breakup were considered and found to match well with the theory. Secondary breakup due to shear was also studied theoretically and compared to the experimental data. Coalescence probability at different axial and radial locations was computed to explain the experimental results. The spray is subdivided into three zones: near the nozzle, a zone consisting of film and ligament regime, where primary breakup and some secondary breakup take place; a second zone where the secondary breakup process continues, but weakens, and the centrifugal dispersion becomes dominant; and a third zone away from the spray where coalescence is dominant. Each regime has been analyzed in detail, characterized by timescale and Weber number and validated using experimental data. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4773065]
Resumo:
Background: Development of sensitive sequence search procedures for the detection of distant relationships between proteins at superfamily/fold level is still a big challenge. The intermediate sequence search approach is the most frequently employed manner of identifying remote homologues effectively. In this study, examination of serine proteases of prolyl oligopeptidase, rhomboid and subtilisin protein families were carried out using plant serine proteases as queries from two genomes including A. thaliana and O. sativa and 13 other families of unrelated folds to identify the distant homologues which could not be obtained using PSI-BLAST. Methodology/Principal Findings: We have proposed to start with multiple queries of classical serine protease members to identify remote homologues in families, using a rigorous approach like Cascade PSI-BLAST. We found that classical sequence based approaches, like PSI-BLAST, showed very low sequence coverage in identifying plant serine proteases. The algorithm was applied on enriched sequence database of homologous domains and we obtained overall average coverage of 88% at family, 77% at superfamily or fold level along with specificity of similar to 100% and Mathew's correlation coefficient of 0.91. Similar approach was also implemented on 13 other protein families representing every structural class in SCOP database. Further investigation with statistical tests, like jackknifing, helped us to better understand the influence of neighbouring protein families. Conclusions/Significance: Our study suggests that employment of multiple queries of a family for the Cascade PSI-BLAST searches is useful for predicting distant relationships effectively even at superfamily level. We have proposed a generalized strategy to cover all the distant members of a particular family using multiple query sequences. Our findings reveal that prior selection of sequences as query and the presence of neighbouring families can be important for covering the search space effectively in minimal computational time. This study also provides an understanding of the `bridging' role of related families.
Resumo:
We study coverage in sensor networks having two types of nodes, namely, sensor nodes and backbone nodes. Each sensor is capable of transmitting information over relatively small distances. The backbone nodes collect information from the sensors. This information is processed and communicated over an ad hoc network formed by the backbone nodes, which are capable of transmitting over much larger distances. We consider two models of deployment for the sensor and backbone nodes. One is a PoissonPoisson cluster model and the other a dependently thinned Poisson point process. We deduce limit laws for functionals of vacancy in both models using properties of association for random measures.
Resumo:
In this article, we have reported the controlled synthesis of uniformly grown zinc oxide nanoparticles (ZnO NPs) films by a simple, low-cost, and scalable pulsed spray pyrolysis technique. From the surface analysis it is noticed that the as-deposited films have uniformly dispersed NPs-like morphology. The structural studies reveal that these NPs films have highly crystalline hexagonal crystal structure, which are preferentially orientated along the (001) planes. The size of the NPs varied between 5 and 100 nm, and exhibited good stoichiometric chemical composition. Raman spectroscopic analysis reveals that these ZnO NPs films have pure single phase and hexagonal crystal structure. These unique nanostructured films exhibited a low electrical resistivity (5 Omega cm) and high light transmittance (90 %) in visible region.
Resumo:
Pure and cadmium doped tin oxide thin films were deposited on glass substrates from aqueous solution of cadmium acetate, tin (IV) chloride and sodium hydroxide by the nebulizer spray pyrolysis (NSP) technique. X-ray diffraction reveals that all films have tetragonal crystalline structure with preferential orientation along (200) plane. On application of the Scherrer formula, it is found that the maximum size of grains is 67 nm. Scanning electron microscopy shows that the grains are of rod and spherical in shape. Energy dispersive X-ray analysis reveals the average ratio of the atomic percentage of pure and Cd doped SnO2 films. The electrical resistivity is found to be 10(2) Omega cm at higher temperature (170 degrees C) and 10(3) Omega cm at lower temperature (30 degrees C). Optical band gap energy was determined from transmittance and absorbance data obtained from UV-vis spectra. Optical studies reveal that the band gap energy decreases from 3.90 eV to 3.52 eV due to the addition of Cd as dopant with different concentrations.
Resumo:
Nanostructured GdxZn1-xO thin films with different Gd concentration from 0% to 10% deposited at 400 degrees C using the NSF technique. The films were characterized by structural, surface and optical properties, respectively. X-ray diffraction analysis shows that the Gd doped ZnO films have lattice parameters a = 3.2497 angstrom and c = 5.2018 angstrom with hexagonal structure and preferential orientation along (002) plane. The estimated values compare well with the standard values. When film thickness increases from 222 to 240 nm a high visible region transmittance (>70%) is observed. The optical band gap energy, optical constants (n and k), complex dielectric constants (epsilon(r), and epsilon(i)) and optical conductivities (sigma(r), and sigma(i)) were calculated from optical transmittance data. The optical band gap energy is 3.2 eV for pure ZnO film and 3.6 eV for Gd0.1Zn0.9-O film. The PL studies confirm the presence of a strong UV emission peak at 399 nm. Besides, the UV emission of ZnO films decreases with the increase of Gd doping concentration correspondingly the ultra-violet emission is replaced by blue and green emissions.
Resumo:
Sodium doped zinc oxide (Na:ZnO) thin films were deposited on glass substrates at substrate temperatures 300,400 and 500 degrees C by a novel nebulizer spray method. X-ray diffraction shows that all the films are polycrystalline in nature having hexagonal structure with high preferential orientation along (0 0 2) plane. High resolution SEM studies reveal the formation of Na-doped ZnO films having uniformly distributed nano-rods over the entire surface of the substrates at 400 degrees C. The complex impedance of the ZnO nano-rods shows two distinguished semicircles and the diameter of the arcs got decreased in diameter as the temperature increases from 170 to 270 degrees C and thereafter slightly increased. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with an experimental study of pressure-swirl hydraulic injector nozzles using non-intrusive optical techniques. Experiments were conducted to study atomization characteristics using two nozzles with different orifice diameters, 0.3 mm and 0.5 mm, and injection pressures, 0.3-3.5 Mpa, which correspond to Reynolds number (Re-p) = 7,000-45,000, depending on nozzle utilized. Three laser diagnostic techniques were utilized: Shadowgraph, PIV (Particle Image Velocimetry), and PDPA (Phase Doppler Particle Anemometry). Measurements made in the spray in both axial and radial directions indicate that velocity, average droplet diameter profiles, and spray dynamics are highly dependent on the nozzle characteristics and injection pressure. Limitations of these techniques in the different flow regimes, related to the primary and secondary breakups as well as coalescence, are provided. Results indicate that all three techniques provide similar results throughout the different regimes. Shadowgraph and PDPA were possible in the secondary atomization and coalescence regimes while PIV measurements could be made only at the end of secondary atomization and coalescence.
Resumo:
Thin films of bovine serum albumin (BSA) nanoparticles are fabricated via layer-by-layer assembly. The surface of BSA nanoparticles have two oppositely acting functional groups on the surface: amine (NH2) and carboxylate (COO-). The protonation and deprotonation of these functional groups at different pH vary the charge density on the particle surface, and entirely different growth can be observed by varying the nature of the complementary polymer and the pH of the particles. The complementary polymers used in this study are poly(dimethyldiallylammonium chloride) (PDDAC) and poly(acrylic acid) (PAA). The assembly of BSA nanoparticles based on electrostatic interaction with PDDAC suffers from the poor loading of the nanoparticles. The assembly with PAA aided by a hydrogen bonding interaction shows tremendous improvement in the growth of the assembly over PDDAC. Moreover, the pH of the BSA nanoparticles was observed to affect the loading of nanoparticles in the LbL assembly with PAA significantly.
Resumo:
Silver Indium Di-sulfide (AgInS2) thin films are deposited using ultrasonic spray pyrolysis technique and the effect of substrate temperature (T-s) on film growth is studied by varying the temperature from 250 to 400 degrees C. From the structural analysis, orthorhombic AgInS2 phase is identified with preferential orientation along (002) plane. Further analysis with Raman revealed the coexistence of Cu-Au ordered and chalcopyrite structures in the films. Stoichiometric films are obtained at T-s of 300 degrees C. Above 300 degrees C, the film conductivity changed from p to n-type and the grain size decreased. The band gap of AgInS2 films varied from 1.55 to 1.89 eV and absorption coefficient is found to be >10(4) cm(-1). The films have sheet resistance in the range of 0.05 to 1300 Omega/square Both p and n type films are prepared through this technique without any external doping. (C) 2013 Elsevier B.V. All rights reserved.