89 resultados para Sporothrix schenckii
Resumo:
Ocean Drilling Program Leg 167 represents the first time since 1978 that the North American Pacific margin was drilled to study ocean history. More than 7500 m of Quaternary to middle Miocene (14 Ma) sediments were recovered from 13 sites, representing the most complete stratigraphic sequence on the California margin. Diatoms are found in most samples in variable abundance and in a moderately well-preserved state throughout the sequence, and they are often dominated by robust, dissolution-resistant species. The Neogene North Pacific diatom zonation of Yanagisawa and Akiba (1998, doi:10.5575/geosoc.104.395) best divides the Miocene to Quaternary sequences, and updated ages of diatom biohorizons estimated based on the geomagnetic polarity time scale of Cande and Kent (1995, doi:10.1029/94JB03098) are slightly revised to adjust the differences between the other zonations. Most of the early middle Miocene through Pleistocene diatom datum levels that have been proven to be of stratigraphic utility in the North Pacific appear to be nearly isochronous within the level of resolution constrained by sample spacing. The assemblages are characterized by species typical of middle-to-high latitudes and regions of high surface-water productivity, predominantly by Coscinodiscus marginatus, Stephanopyxis species, Proboscia barboi, and Thalassiothrix longissima. Latest Miocene through Pliocene assemblages in the region of the California Current, however, are intermediate between those of subarctic and subtropical areas. As a result, neither the existing tropical nor the subarctic (high latitude) zonal schemes were applicable for this region. An interval of pronounced diatom dissolution detected throughout the Pliocene sequence apparently correspond to a relatively warmer paleoceanographic condition resulting in a slackening of the southward flow of the California Current.
Resumo:
Long-term evolution is thought to take opportunities that arise as a consequence of mass extinction (as argued, for example, by Gould, 2002) and the following biotic recovery, but there is absolutely no evidence for this being the case. However, our study shows that eutrophication by oceanic mixing also played a part in the enhancement of several evolutionary events amongst marine organisms, and these results could indicate that the rates of oceanic biodiversification may be slowed if upwelling becomes weakened by future global warming. This paper defines three distinct evolutionary events of resting spores of the marine diatom genus Chaetoceros, to reconstruct past upwelling through the analysis of several DSDP, ODP and land-based successions from the North, South and equatorial Pacific as well as the Atlantic Ocean during the past 40 million years. The Atlantic Chaetoceros Explosion (ACE) event occurred across the E/O boundary in the North Atlantic, and is characterized by resting spore diversification that occurred as a consequence of the onset of upwelling following changes in thermohaline circulation through global cooling in the early Oligocene. Pacific Chaetoceros Explosion events-1 and -2 (PACE-1 and PACE-2) are characterized by relatively higher occurrences of iron input following the Himalayan uplift and aridification at 8.5 Ma and ca. 2.5 Ma in the North Pacific region. These events not only enhanced the diversification and increased abundance of primary producers, including that of Chaetoceros, other diatoms and seaweeds, but also stimulated the evolution of zooplankton and larger predators, such as copepods and marine mammals, which ate these phytoplankton and plants. Current thinking suggests new evolutionary niches open up after a mass extinction, but our study finds that eutrophication can also stimulate evolutionary diversification. Moreover, in the opposite fashion, our results show that as thermohaline circulation abates, global warming progresses and the ocean surface becomes warmer, many marine organisms will be affected by the environmental degradation.
Resumo:
The coastal bays of South Florida are located downstream of the Florida Everglades, where a comprehensive restoration plan will strongly impact the hydrology of the region. Submerged aquatic vegetation communities are common components of benthic habitats of Biscayne Bay, and will be directly affected by changes in water quality. This study explores community structure, spatio-temporal dynamics, and tissue nutrient content of macroalgae to detect and describe relationships with water quality. The macroalgal community responded to strong variability in salinity; three distinctive macroalgal assemblages were correlated with salinity as follows: (1) low-salinity, dominated by Chara hornemannii and a mix of filamentous algae; (2) brackish, dominated by Penicillus capitatus, Batophora oerstedii, and Acetabularia schenckii; and (3) marine, dominated by Halimeda incrassata and Anadyomene stellata. Tissue-nutrient content was variable in space and time but tissues at all sites had high nitrogen and N:P values, demonstrating high nitrogen availability and phosphorus limitation in this region. This study clearly shows that distinct macroalgal assemblages are related to specific water quality conditions, and that macroalgal assemblages can be used as community-level indicators within an adaptive management framework to evaluate performance and restoration impacts in Biscayne Bay and other regions where both freshwater and nutrient inputs are modified by water management decisions.