924 resultados para Spinal Nerve Roots


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear synchronously along the lumbo-sacral segments. These CDPs have different shapes and magnitudes. Previous work has indicated that some CDPs appear to be specially associated with the activation of spinal pathways that lead to primary afferent depolarization and presynaptic inhibition. Visual detection and classification of these CDPs provides relevant information on the functional organization of the neural networks involved in the control of sensory information and allows the characterization of the changes produced by acute nerve and spinal lesions. We now present a novel feature extraction approach for signal classification, applied to CDP detection. The method is based on an intuitive procedure. We first remove by convolution the noise from the CDPs recorded in each given spinal segment. Then, we assign a coefficient for each main local maximum of the signal using its amplitude and distance to the most important maximum of the signal. These coefficients will be the input for the subsequent classification algorithm. In particular, we employ gradient boosting classification trees. This combination of approaches allows a faster and more accurate discrimination of CDPs than is obtained by other methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental lemurs either were infected orally with the agent of bovine spongiform encephalopathy (BSE) or were maintained as uninfected control animals. Immunohistochemical examination for proteinase-resistant protein (prion protein or PrP) was performed on tissues from two infected but still asymptomatic lemurs, killed 5 months after infection, and from three uninfected control lemurs. Control tissues showed no staining, whereas PrP was detected in the infected animals in tonsil, gastrointestinal tract and associated lymphatic tissues, and spleen. In addition, PrP was detected in ventral and dorsal roots of the cervical spinal cord, and within the spinal cord PrP could be traced in nerve tracts as far as the cerebral cortex. Similar patterns of PrP immunoreactivity were seen in two symptomatic and 18 apparently healthy lemurs in three different French primate centers, all of which had been fed diets supplemented with a beef protein product manufactured by a British company that has since ceased to include beef in its veterinary nutritional products. This study of BSE-infected lemurs early in their incubation period extends previous pathogenesis studies of the distribution of infectivity and PrP in natural and experimental scrapie. The similarity of neuropathology and PrP immunostaining patterns in experimentally infected animals to those observed in both symptomatic and asymptomatic animals in primate centers suggests that BSE contamination of zoo animals may have been more widespread than is generally appreciated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cocaine- and amphetamine-regulated transcript (CART) is widely expressed in the central nervous system. Recent studies have pointed to a role for CART-derived peptides in inhibiting feeding behavior. Although these actions have generally been attributed to hypothalamic CART, it remains to be determined whether additional CART pathways exist that link signals from the gastrointestinal tract to the central control of food intake. In the present study, we have investigated the presence of CART in the rat vagus nerve and nodose ganglion. In the viscerosensory nodose ganglion, half of the neuron profiles expressed CART and its predicted peptide, as determined by in situ hybridization and immunohistochemistry. CART expression was markedly attenuated after vagotomy, but no modulation was observed after food restriction or high-fat regimes. A large proportion of CART-labeled neuron profiles also expressed cholecystokinin A receptor mRNA. CART-peptide-like immunoreactivity was transported in the vagus nerve and found in a dense fiber plexus in the nucleus tractus solitarii. Studies on CART in the spinal somatosensory system revealed strong immunostaining of the dorsal horn but only a small number of stained cell bodies in dorsal root ganglia. The present results suggest that CART-derived peptides are present in vagal afferent neurons sensitive to cholecystokinin, suggesting that the role of these peptides in feeding may be explained partly by mediating postprandial satiety effects of cholecystokinin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antagonists of glutamate receptors of the N-methyl-d-aspartate subclass (NMDAR) or inhibitors of nitric oxide synthase (NOS) prevent nervous system plasticity. Inflammatory and neuropathic pain rely on plasticity, presenting a clinical opportunity for the use of NMDAR antagonists and NOS inhibitors in chronic pain. Agmatine (AG), an endogenous neuromodulator present in brain and spinal cord, has both NMDAR antagonist and NOS inhibitor activities. We report here that AG, exogenously administered to rodents, decreased hyperalgesia accompanying inflammation, normalized the mechanical hypersensitivity (allodynia/hyperalgesia) produced by chemical or mechanical nerve injury, and reduced autotomy-like behavior and lesion size after excitotoxic spinal cord injury. AG produced these effects in the absence of antinociceptive effects in acute pain tests. Endogenous AG also was detected in rodent lumbosacral spinal cord in concentrations similar to those previously detected in brain. The evidence suggests a unique antiplasticity and neuroprotective role for AG in processes underlying persistent pain and neuronal injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary sensory neurons that respond to noxious stimulation and project to the spinal cord are known to fall into two distinct groups: one sensitive to nerve growth factor and the other sensitive to glial cell-line-derived neurotrophic factor. There is currently considerable interest in the ways in which these factors may regulate nociceptor properties. Recently, however, it has emerged that another trophic factor—brain-derived neurotrophic factor (BDNF)—may play an important neuromodulatory role in the dorsal horn of the spinal cord. BDNF meets many of the criteria necessary to establish it as a neurotransmitter/neuromodulator in small-diameter nociceptive neurons. It is synthesized by these neurons and packaged in dense core vesicles in nociceptor terminals in the superficial dorsal horn. It is markedly up-regulated in inflammatory conditions in a nerve growth factor-dependent fashion. Postsynaptic cells in this region express receptors for BDNF. Spinal neurons show increased excitability to nociceptive inputs after treatment with exogenous BDNF. There are both electrophysiological and behavioral data showing that antagonism of BDNF at least partially prevents some aspects of central sensitization. Together, these findings suggest that BDNF may be released from primary sensory nociceptors with activity, particularly in some persistent pain states, and may then increase the excitability of rostrally projecting second-order systems. BDNF released from nociceptive terminals may thus contribute to the sensory abnormalities associated with some pathophysiological states, notably inflammatory conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunohistochemical visualization of the rat vesicular acetylcholine transporter (VAChT) in cholinergic neurons and nerve terminals has been compared to that for choline acetyltransferase (ChAT), heretofore the most specific marker for cholinergic neurons. VAChT-positive cell bodies were visualized in cerebral cortex, basal forebrain, medial habenula, striatum, brain stem, and spinal cord by using a polyclonal anti-VAChT antiserum. VAChT-immuno-reactive fibers and terminals were also visualized in these regions and in hippocampus, at neuromuscular junctions within skeletal muscle, and in sympathetic and parasympathetic autonomic ganglia and target tissues. Cholinergic nerve terminals contain more VAChT than ChAT immunoreactivity after routine fixation, consistent with a concentration of VAChT within terminal neuronal arborizations in which secretory vesicles are clustered. These include VAChT-positive terminals of the median eminence or the hypothalamus, not observed with ChAT antiserum after routine fixation. Subcellular localization of VAChT in specific organelles in neuronal cells was examined by immunoelectron microscopy in a rat neuronal cell line (PC 12-c4) expressing VAChT as well as the endocrine and neuronal forms of the vesicular monoamine transporters (VMAT1 and VMAT2). VAChT is targeted to small synaptic vesicles, while VMAT1 is found mainly but not exclusively on large dense-core vesicles. VMAT2 is found on large dense-core vesicles but not on the small synaptic vesicles that contain VAChT in PC12-c4 cells, despite the presence of VMAT2 immunoreactivity in central and peripheral nerve terminals known to contain monoamines in small synaptic vesicles. Thus, VAChT and VMAT2 may be specific markers for "cholinergic" and "adrenergic" small synaptic vesicles, with the latter not expressed in nonstimulated neuronally differentiated PC12-c4 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To know the impact of the Dynesys system on the functional outcomes in patients with spinal degenerative diseases. Summary of background data: Dynesys system has been proposed as an alternative to vertebral fusion for several spinal degenerative diseases. The fact that it has been used in people with different diagnosis criteria using different tools to measure clinical outcomes makes very difficult unifying the results available nowadays. Methods: The data base of Medlars Online International Literature (MEDLINE) via PubMed©, EMBASE©, and the Cochrane Library Plus were reviewed in search of all the studies published until November 2012 in which an operation with Dynesys in patients with spinal degenerative diseases and an evaluation of the results by an analysis of functional outcomes had taken place. No limits were used to article type, date of publication or language. Results: A total of 134 articles were found, 26 of which fulfilled the inclusion criteria after being assessed by two reviewers. All of them were case series, except for a multicenter randomized clinical trial (RCT) and a prospective case-control study. The selected articles made a total of 1507 cases. The most frequent diagnosis were lumbar spinal canal stenosis (LSCS), degenerative disc disease (DDD), degenerative spondylolisthesis (DS) and lumbar degenerative scoliosis (LDS). In cases of lumbar spinal canal stenosis Dynesys was associated to surgical decompression. Several tools to measure the functional disability and general health status were found. Oswestry Disability Index (ODI), the ODI Korean version (K-Odi), Prolo, Sf-36, Sf-12, Roland-Morris disability questionnaire (RMDQ), and the pain Visual Analogue Scale (VAS) were the most used. They showed positive results in all cases series reviewed. In most studies the ODI decreased about 25% (e.g. from a score of 85% to 60%). Better results when dynamic fusion was combined with nerve root decompression were found. Functional outcomes and leg pain scores with Dynesys were statistically non-inferior to posterolateral spinal fusion using autogenous bone. When Dynesys and decompression was compared with posterior interbody lumbar fixation (PLIF) and decompression, differences in ODI and VAS were not statistically significant. Conclusions: In patients with spinal degenerative diseases due to degenerative disc disorders, spinal canal stenosis and degenerative spondylolisthesis, surgery with Dynesys and decompression improves functional outcomes, decreases disability, and reduces back and leg pain. More studies are needed to conclude that dynamic stabilization is better than posterolateral and posterior interbody lumbar fusion. Studies comparing Dynesys with decompression against decompression alone should be done in order to isolate the effect of the dynamic stabilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study Design. Experimental study of muscle changes after lumbar spinal injury. Objectives. To investigate effects of intervertebral disc and nerve root lesions on cross-sectional area, histology and chemistry of porcine lumbar multifidus. Summary of Background Data. The multifidus cross-sectional area is reduced in acute and chronic low back pain. Although chronic changes are widespread, acute changes at 1 segment are identified within days of injury. It is uncertain whether changes precede or follow injury, or what is the mechanism. Methods. The multifidus cross-sectional area was measured in 21 pigs from L1 to S1 with ultrasound before and 3 or 6 days after lesions: incision into L3 - L4 disc, medial branch transection of the L3 dorsal ramus, and a sham procedure. Samples from L3 to L5 were studied histologically and chemically. Results. The multifidus cross-sectional area was reduced at L4 ipsilateral to disc lesion but at L4 - L6 after nerve lesion. There was no change after sham or on the opposite side. Water and lactate were reduced bilaterally after disc lesion and ipsilateral to nerve lesion. Histology revealed enlargement of adipocytes and clustering of myofibers at multiple levels after disc and nerve lesions. Conclusions. These data resolve the controversy that the multifidus cross-sectional area reduces rapidly after lumbar injury. Changes after disc lesion affect 1 level with a different distribution to denervation. Such changes may be due to disuse following reflex inhibitory mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neonatal X-irradiation of central nervous system (CNS) tissue markedly reduces the glial population in the irradiated area. Previous in vivo studies have demonstrated regenerative success of adult dorsal root ganglion (DRG) neurons into the neonatally-irradiated spinal cord. The present study was undertaken to determine whether these results could be replicated in an in vitro environment. The lumbosacral spinal cord of anaesthetised Wistar rat pups, aged between 1 and 5 days, was subjected to a single dose (40 Gray) of X-irradiation. A sham-irradiated group acted as controls. Rats were allowed to reach adulthood before being killed. Their lumbosacral spinal cords were dissected out and processed for sectioning in a cryostat. Cryosections (10 mum-thick) of the spinal cord tissue were picked up on sterile glass coverslips and used as substrates for culturing dissociated adult DRG neurons. After an appropriate incubation period, cultures were fixed in 2% paraformaldehyde and immunolabelled to visualise both the spinal cord substrate using anti-glial fibrillary acidic protein (GFAP) and the growing DRG neurons using anti-growth associated protein (GAP-43). Successful growth of DRG neurites was observed on irradiated, but not on non-irradiated, sections of spinal cord. Thus, neonatal X-irradiation of spinal cord tissue appears to alter its environment such that it can later support, rather than inhibit, axonal regeneration. It is suggested that this alteration may be due, at least in part, to depletion in the number of and/or a change in the characteristics of the glial cells. (C) 2000 ISDN. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background:Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease.Methods:Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass.Results:The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) -2 progressively increased.Conclusions:Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease. © 2013 Hirai et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background context Transplantation of bone marrow cells into spinal cord lesions promotes functional recovery in animal models, and recent clinical trials suggest possible recovery also in humans. The mechanisms responsible for these improvements are still unclear. Purpose To characterize spinal cord motor neurite interactions with human bone marrow stromal cells (MSCs) in an in vitro model of spinal cord injury (SCI). Study design/setting Previously, we have reported that human MSCs promote the growth of extending sensory neurites from dorsal root ganglia (DRG), in the presence of some of the molecules present in the glial scar, which are attributed with inhibiting axonal regeneration after SCI. We have adapted and optimized this system replacing the DRG with a spinal cord culture to produce a central nervous system (CNS) model, which is more relevant to the SCI situation. Methods We have developed and characterized a novel spinal cord culture system. Human MSCs were cocultured with spinal motor neurites in substrate choice assays containing glial scar-associated inhibitors of nerve growth. In separate experiments, MSC-conditioned media were analyzed and added to spinal motor neurites in substrate choice assays. Results As has been reported previously with DRG, substrate-bound neurocan and Nogo-A repelled spinal neuronal adhesion and neurite outgrowth, but these inhibitory effects were abrogated in MSC/spinal cord cocultures. However, unlike DRG, spinal neuronal bodies and neurites showed no inhibition to substrates of myelin-associated glycoprotein. In addition, the MSC secretome contained numerous neurotrophic factors that stimulated spinal neurite outgrowth, but these were not sufficient stimuli to promote spinal neurite extension over inhibitory concentrations of neurocan or Nogo-A. Conclusions These findings provide novel insight into how MSC transplantation may promote regeneration and functional recovery in animal models of SCI and in the clinic, especially in the chronic situation in which glial scars (and associated neural inhibitors) are well established. In addition, we have confirmed that this CNS model predominantly comprises motor neurons via immunocytochemical characterization. We hope that this model may be used in future research to test various other potential interventions for spinal injury or disease states. © 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intraoperative neurophysiologic monitoring is an integral part of spinal surgeries and involves the recording of somatosensory evoked potentials (SSEP). However, clinical application of IONM still requires anywhere between 200 to 2000 trials to obtain an SSEP signal, which is excessive and introduces a significant delay during surgery to detect a possible neurological damage. The aim of this study is to develop a means to obtain the SSEP using a much less, twelve number of recordings. The preliminary step involved was to distinguish the SSEP with the ongoing brain activity. We first establish that the brain activity is indeed quasi-stationary whereas an SSEP is expected to be identical every time a trial is recorded. An algorithm was developed using Chebychev time windowing for preconditioning of SSEP trials to retain the morphological characteristics of somatosensory evoked potentials (SSEP). This preconditioning was followed by the application of a principal component analysis (PCA)-based algorithm utilizing quasi-stationarity of EEG on 12 preconditioned trials. A unique Walsh transform operation was then used to identify the position of the SSEP event. An alarm is raised when there is a 10% time in latency deviation and/or 50% peak-to-peak amplitude deviation, as per the clinical requirements. The algorithm shows consistency in the results in monitoring SSEP in up to 6-hour surgical procedures even under this significantly reduced number of trials. In this study, the analysis was performed on the data recorded in 29 patients undergoing surgery during which the posterior tibial nerve was stimulated and SSEP response was recorded from scalp. This method is shown empirically to be more clinically viable than present day approaches. In all 29 cases, the algorithm takes 4sec to extract an SSEP signal, as compared to conventional methods, which take several minutes. The monitoring process using the algorithm was successful and proved conclusive under the clinical constraints throughout the different surgical procedures with an accuracy of 91.5%. Higher accuracy and faster execution time, observed in the present study, in determining the SSEP signals provide a much improved and effective neurophysiological monitoring process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of Cobb angles from radiographs is routine practice in spinal clinics. The technique relies on the use and availability of specialist equipment such as a goniometer, cobbometer or protractor. The aim of this study was to validate the use of i-Phone (Apple Inc) combined with Tilt Meter Pro software as compared to a protractor in the measurement of Cobb angles. Between November 2008 and December 2008 20 patients were selected at random from the Paediatric Spine Research Groups Database. A power calculation was performed which indicated if n=240 measurements the study had a 96% chance of detecting a 5 degree difference between groups. All patients had idiopathic scoliosis with a range of curve types and severities. The study found the i-Phone combined with Tilt Meter Pro software offers a faster alternative to the traditional method of Cobb angle measurement. The use of i-Phone offers a more convenient way of measuring Cobb angles in the outpatient setting. The intra-observer repeatability of the iPhone is equivalent to the protractor in the measurement of Cobb angles.