171 resultados para Sparsity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

How can we correlate the neural activity in the human brain as it responds to typed words, with properties of these terms (like ‘edible’, ‘fits in hand’)? In short, we want to find latent variables, that jointly explain both the brain activity, as well as the behavioral responses. This is one of many settings of the Coupled Matrix-Tensor Factorization (CMTF) problem.

Can we accelerate any CMTF solver, so that it runs within a few minutes instead of tens of hours to a day, while maintaining good accuracy? We introduce Turbo-SMT, a meta-method capable of doing exactly that: it boosts the performance of any CMTF algorithm, by up to 200x, along with an up to 65 fold increase in sparsity, with comparable accuracy to the baseline.

We apply Turbo-SMT to BrainQ, a dataset consisting of a (nouns, brain voxels, human subjects) tensor and a (nouns, properties) matrix, with coupling along the nouns dimension. Turbo-SMT is able to find meaningful latent variables, as well as to predict brain activity with competitive accuracy.




Relevância:

10.00% 10.00%

Publicador:

Resumo:

A forward and backward least angle regression (LAR) algorithm is proposed to construct the nonlinear autoregressive model with exogenous inputs (NARX) that is widely used to describe a large class of nonlinear dynamic systems. The main objective of this paper is to improve model sparsity and generalization performance of the original forward LAR algorithm. This is achieved by introducing a replacement scheme using an additional backward LAR stage. The backward stage replaces insignificant model terms selected by forward LAR with more significant ones, leading to an improved model in terms of the model compactness and performance. A numerical example to construct four types of NARX models, namely polynomials, radial basis function (RBF) networks, neuro fuzzy and wavelet networks, is presented to illustrate the effectiveness of the proposed technique in comparison with some popular methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose a sparse multi-carrier index keying (MCIK) method for orthogonal frequency division multiplexing (OFDM) system, which uses the indices of sparse sub-carriers to transmit the data, and improve the performance
of signal detection in highly correlated sub-carriers. Although a receiver is able to exploit a power gain with precoding in OFDM, the sensitivity of the signal detection is usually high as the orthogonality is not retained in highly dispersive
environments. To overcome this, we focus on developing the trade-off between the sparsity of the MCIK, correlation, and performances, analyzing the average probability of the error propagation imposed by incorrect index detection over highly correlated sub-carriers. In asymptotic cases, we are able to see how sparsity of MCIK should be designed in order to perform superior to the classical OFDM system. Based on this feature, sparse MCIK based OFDM is a better choice for low detection errors in highly correlated sub-carriers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How can we correlate neural activity in the human brain as it responds to words, with behavioral data expressed as answers to questions about these same words? In short, we want to find latent variables, that explain both the brain activity, as well as the behavioral responses. We show that this is an instance of the Coupled Matrix-Tensor Factorization (CMTF) problem. We propose Scoup-SMT, a novel, fast, and parallel algorithm that solves the CMTF problem and produces a sparse latent low-rank subspace of the data. In our experiments, we find that Scoup-SMT is 50-100 times faster than a state-of-the-art algorithm for CMTF, along with a 5 fold increase in sparsity. Moreover, we extend Scoup-SMT to handle missing data without degradation of performance. We apply Scoup-SMT to BrainQ, a dataset consisting of a (nouns, brain voxels, human subjects) tensor and a (nouns, properties) matrix, with coupling along the nouns dimension. Scoup-SMT is able to find meaningful latent variables, as well as to predict brain activity with competitive accuracy. Finally, we demonstrate the generality of Scoup-SMT, by applying it on a Facebook dataset (users, friends, wall-postings); there, Scoup-SMT spots spammer-like anomalies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tese apresenta algoritmos que estimam o espetro de um sinal não periódico a partir de um numero finito de amostras, tirando partido da esparsidade do sinal no domínio da frequência. Trata-se de um problema em que devido aos efeitos de leakage, o sucesso dos algoritmos tradicionais esta limitado. Para ultrapassar o problema, os algoritmos propostos transformam a base DFT numa frame com um maior numero de colunas, inserindo um numero reduzido de colunas entre algumas das iniciais. Estes algoritmos são baseados na teoria do compressed sensing, que permite obter e representar sinais esparsos e compressíveis, utilizando uma taxa de amostragem muito inferior à taxa de Nyquist. Os algoritmos propostos apresentam um bom desempenho em comparação com os algoritmos existentes, destacando-se na estimação do espetro de sinais compostos por sinusóides com frequências muito próximas, com amplitudes diferentes e na presença de ruído, situação particularmente difícil e perante a qual os restantes algoritmos falham.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compressed sensing is a new paradigm in signal processing which states that for certain matrices sparse representations can be obtained by a simple l1-minimization. In this thesis we explore this paradigm for higher-dimensional signal. In particular three cases are being studied: signals taking values in a bicomplex algebra, quaternionic signals, and complex signals which are representable by a nonlinear Fourier basis, a so-called Takenaka-Malmquist system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sparse matrix-vector multiplication (SMVM) is a fundamental operation in many scientific and engineering applications. In many cases sparse matrices have thousands of rows and columns where most of the entries are zero, while non-zero data is spread over the matrix. This sparsity of data locality reduces the effectiveness of data cache in general-purpose processors quite reducing their performance efficiency when compared to what is achieved with dense matrix multiplication. In this paper, we propose a parallel processing solution for SMVM in a many-core architecture. The architecture is tested with known benchmarks using a ZYNQ-7020 FPGA. The architecture is scalable in the number of core elements and limited only by the available memory bandwidth. It achieves performance efficiencies up to almost 70% and better performances than previous FPGA designs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La diversification des résultats de recherche (DRR) vise à sélectionner divers documents à partir des résultats de recherche afin de couvrir autant d’intentions que possible. Dans les approches existantes, on suppose que les résultats initiaux sont suffisamment diversifiés et couvrent bien les aspects de la requête. Or, on observe souvent que les résultats initiaux n’arrivent pas à couvrir certains aspects. Dans cette thèse, nous proposons une nouvelle approche de DRR qui consiste à diversifier l’expansion de requête (DER) afin d’avoir une meilleure couverture des aspects. Les termes d’expansion sont sélectionnés à partir d’une ou de plusieurs ressource(s) suivant le principe de pertinence marginale maximale. Dans notre première contribution, nous proposons une méthode pour DER au niveau des termes où la similarité entre les termes est mesurée superficiellement à l’aide des ressources. Quand plusieurs ressources sont utilisées pour DER, elles ont été uniformément combinées dans la littérature, ce qui permet d’ignorer la contribution individuelle de chaque ressource par rapport à la requête. Dans la seconde contribution de cette thèse, nous proposons une nouvelle méthode de pondération de ressources selon la requête. Notre méthode utilise un ensemble de caractéristiques qui sont intégrées à un modèle de régression linéaire, et génère à partir de chaque ressource un nombre de termes d’expansion proportionnellement au poids de cette ressource. Les méthodes proposées pour DER se concentrent sur l’élimination de la redondance entre les termes d’expansion sans se soucier si les termes sélectionnés couvrent effectivement les différents aspects de la requête. Pour pallier à cet inconvénient, nous introduisons dans la troisième contribution de cette thèse une nouvelle méthode pour DER au niveau des aspects. Notre méthode est entraînée de façon supervisée selon le principe que les termes reliés doivent correspondre au même aspect. Cette méthode permet de sélectionner des termes d’expansion à un niveau sémantique latent afin de couvrir autant que possible différents aspects de la requête. De plus, cette méthode autorise l’intégration de plusieurs ressources afin de suggérer des termes d’expansion, et supporte l’intégration de plusieurs contraintes telles que la contrainte de dispersion. Nous évaluons nos méthodes à l’aide des données de ClueWeb09B et de trois collections de requêtes de TRECWeb track et montrons l’utilité de nos approches par rapport aux méthodes existantes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the problem of finding sparse representations of a class of signals. We formalize the problem and prove it is NP-complete both in the case of a single signal and that of multiple ones. Next we develop a simple approximation method to the problem and we show experimental results using artificially generated signals. Furthermore,we use our approximation method to find sparse representations of classes of real signals, specifically of images of pedestrians. We discuss the relation between our formulation of the sparsity problem and the problem of finding representations of objects that are compact and appropriate for detection and classification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new paradigm for signal reconstruction and superresolution, Correlation Kernel Analysis (CKA), that is based on the selection of a sparse set of bases from a large dictionary of class- specific basis functions. The basis functions that we use are the correlation functions of the class of signals we are analyzing. To choose the appropriate features from this large dictionary, we use Support Vector Machine (SVM) regression and compare this to traditional Principal Component Analysis (PCA) for the tasks of signal reconstruction, superresolution, and compression. The testbed we use in this paper is a set of images of pedestrians. This paper also presents results of experiments in which we use a dictionary of multiscale basis functions and then use Basis Pursuit De-Noising to obtain a sparse, multiscale approximation of a signal. The results are analyzed and we conclude that 1) when used with a sparse representation technique, the correlation function is an effective kernel for image reconstruction and superresolution, 2) for image compression, PCA and SVM have different tradeoffs, depending on the particular metric that is used to evaluate the results, 3) in sparse representation techniques, L_1 is not a good proxy for the true measure of sparsity, L_0, and 4) the L_epsilon norm may be a better error metric for image reconstruction and compression than the L_2 norm, though the exact psychophysical metric should take into account high order structure in images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethernet is becoming the dominant aggregation technology for carrier transport networks; however, as it is a LAN technology, native bridged ethernet does not fulfill all the carrier requirements. One of the schemes proposed by the research community to make ethernet fulfill carrier requirements is ethernet VLAN-label switching (ELS). ELS allows the creation of label switched data paths using a 12-bit label encoded in the VLAN TAG control information field. Previous label switching technologies such as MPLS use more bits for encoding the label. Hence, they do not suffer from label sparsity issues as ELS might. This paper studies the sparsity issues resulting from the reduced ELS VLAN-label space and proposes the use of the label merging technique to improve label space usage. Experimental results show that label merging considerably improves label space usage

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the classical Parzen window estimate as the target function, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density estimates. The proposed algorithm incrementally minimises a leave-one-out test error score to select a sparse kernel model, and a local regularisation method is incorporated into the density construction process to further enforce sparsity. The kernel weights are finally updated using the multiplicative nonnegative quadratic programming algorithm, which has the ability to reduce the model size further. Except for the kernel width, the proposed algorithm has no other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction procedure. Two examples are used to demonstrate the ability of this regression-based approach to effectively construct a sparse kernel density estimate with comparable accuracy to that of the full-sample optimised Parzen window density estimate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a fully complex-valued radial basis function (RBF) network for regression application. The locally regularised orthogonal least squares (LROLS) algorithm with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF network models, is extended to the fully complex-valued RBF network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully complex-valued RBF network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel sparse kernel density estimator is derived based on a regression approach, which selects a very small subset of significant kernels by means of the D-optimality experimental design criterion using an orthogonal forward selection procedure. The weights of the resulting sparse kernel model are calculated using the multiplicative nonnegative quadratic programming algorithm. The proposed method is computationally attractive, in comparison with many existing kernel density estimation algorithms. Our numerical results also show that the proposed method compares favourably with other existing methods, in terms of both test accuracy and model sparsity, for constructing kernel density estimates.