884 resultados para Solution of mathematical problems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stochastic differential equations (SDEs) arise fi om physical systems where the parameters describing the system can only be estimated or are subject to noise. There has been much work done recently on developing numerical methods for solving SDEs. This paper will focus on stability issues and variable stepsize implementation techniques for numerically solving SDEs effectively. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A newly developed computational approach is proposed in the paper for the analysis of multiple crack problems based on the eigen crack opening displacement (COD) boundary integral equations. The eigen COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix to determine all the unknown CODs step by step. To deal with the interactions among cracks for multiple crack problems, all cracks in the problem are divided into two groups, namely the adjacent group and the far-field group, according to the distance to the current crack in consideration. The adjacent group contains cracks with relatively small distances but strong effects to the current crack, while the others, the cracks of far-field group are composed of those with relatively large distances. Correspondingly, the eigen COD of the current crack is computed in two parts. The first part is computed by using the fictitious tractions of adjacent cracks via the local Eshelby matrix derived from the traction boundary integral equations in discretized form, while the second part is computed by using those of far-field cracks so that the high computational efficiency can be achieved in the proposed approach. The numerical results of the proposed approach are compared not only with those using the dual boundary integral equations (D-BIE) and the BIE with numerical Green's functions (NGF) but also with those of the analytical solutions in literature. The effectiveness and the efficiency of the proposed approach is verified. Numerical examples are provided for the stress intensity factors of cracks, up to several thousands in number, in both the finite and infinite plates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a fast Poisson preconditioner for the efficient numerical solution of a class of two-sided nonlinear space fractional diffusion equations in one and two dimensions using the method of lines. Using the shifted Gr¨unwald finite difference formulas to approximate the two-sided(i.e. the left and right Riemann-Liouville) fractional derivatives, the resulting semi-discrete nonlinear systems have dense Jacobian matrices owing to the non-local property of fractional derivatives. We employ a modern initial value problem solver utilising backward differentiation formulas and Jacobian-free Newton-Krylov methods to solve these systems. For efficient performance of the Jacobianfree Newton-Krylov method it is essential to apply an effective preconditioner to accelerate the convergence of the linear iterative solver. The key contribution of our work is to generalise the fast Poisson preconditioner, widely used for integer-order diffusion equations, so that it applies to the two-sided space fractional diffusion equation. A number of numerical experiments are presented to demonstrate the effectiveness of the preconditioner and the overall solution strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new optimal control model of the interactions between a growing tumour and the host immune system along with an immunotherapy treatment strategy is presented. The model is based on an ordinary differential equation model of interactions between the growing tu- mour and the natural killer, cytotoxic T lymphocyte and dendritic cells of the host immune system, extended through the addition of a control function representing the application of a dendritic cell treat- ment to the system. The numerical solution of this model, obtained from a multi species Runge–Kutta forward-backward sweep scheme, is described. We investigate the effects of varying the maximum al- lowed amount of dendritic cell vaccine administered to the system and find that control of the tumour cell population is best effected via a high initial vaccine level, followed by reduced treatment and finally cessation of treatment. We also found that increasing the strength of the dendritic cell vaccine causes an increase in the number of natural killer cells and lymphocytes, which in turn reduces the growth of the tumour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The numerical solution in one space dimension of advection--reaction--diffusion systems with nonlinear source terms may invoke a high computational cost when the presently available methods are used. Numerous examples of finite volume schemes with high order spatial discretisations together with various techniques for the approximation of the advection term can be found in the literature. Almost all such techniques result in a nonlinear system of equations as a consequence of the finite volume discretisation especially when there are nonlinear source terms in the associated partial differential equation models. This work introduces a new technique that avoids having such nonlinear systems of equations generated by the spatial discretisation process when nonlinear source terms in the model equations can be expanded in positive powers of the dependent function of interest. The basis of this method is a new linearisation technique for the temporal integration of the nonlinear source terms as a supplementation of a more typical finite volume method. The resulting linear system of equations is shown to be both accurate and significantly faster than methods that necessitate the use of solvers for nonlinear system of equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designed for undergraduate and postgraduate students, academic researchers and industrial practitioners, this book provides comprehensive case studies on numerical computing of industrial processes and step-by-step procedures for conducting industrial computing. It assumes minimal knowledge in numerical computing and computer programming, making it easy to read, understand and follow. Topics discussed include fundamentals of industrial computing, finite difference methods, the Wavelet-Collocation Method, the Wavelet-Galerkin Method, High Resolution Methods, and comparative studies of various methods. These are discussed using examples of carefully selected models from real processes of industrial significance. The step-by-step procedures in all these case studies can be easily applied to other industrial processes without a need for major changes and thus provide readers with useful frameworks for the applications of engineering computing in fundamental research problems and practical development scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is presented for obtaining useful closed form solution of a system of generalized Abel integral equations by using the ideas of fractional integral operators and their applications. This system appears in solving certain mixed boundary value problems arising in the classical theory of elasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A direct method of solution is presented for singular integral equations of the first kind, involving the combination of a logarithmic and a Cauchy type singularity. Two typical cages are considered, in one of which the range of integration is a Single finite interval and, in the other, the range of integration is a union of disjoint finite intervals. More such general equations associated with a finite number (greater than two) of finite, disjoint, intervals can also be handled by the technique employed here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that the a;P?lication of the Poincare-Bertrand fcm~ulaw hen made in a suitable manner produces the s~lutiano f certain singular integral equations very quickly, thc method of arriving at which, otherwise, is too complicaled. Two singular integral equations are considered. One of these quaiions is with a Cauchy-tyge kcrnel arid the other is an equalion which appears in the a a w guide theory and the theory of dishcations. Adifferent approach i? alw made here to solve the singular integralquation> of the waveguide theor? ind this i ~ v o l v eth~e use of the inversion formula of the Cauchy-type singular integral equahn and dudion to a system of TIilberl problems for two unknowns which can be dwupled wry easily to obi& tbe closed form solutim of the irilegral equatlou at band. The methods of the prescnt paper avoid all the complicaled approaches of solving the singular integral equaticn of the waveguide theory knowr todate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plywood manufacture includes two fundamental stages. The first is to peel or separate logs into veneer sheets of different thicknesses. The second is to assemble veneer sheets into finished plywood products. At the first stage a decision must be made as to the number of different veneer thicknesses to be peeled and what these thicknesses should be. At the second stage, choices must be made as to how these veneers will be assembled into final products to meet certain constraints while minimizing wood loss. These decisions present a fundamental management dilemma. Costs of peeling, drying, storage, handling, etc. can be reduced by decreasing the number of veneer thicknesses peeled. However, a reduced set of thickness options may make it infeasible to produce the variety of products demanded by the market or increase wood loss by requiring less efficient selection of thicknesses for assembly. In this paper the joint problem of veneer choice and plywood construction is formulated as a nonlinear integer programming problem. A relatively simple optimal solution procedure is developed that exploits special problem structure. This procedure is examined on data from a British Columbia plywood mill. Restricted to the existing set of veneer thicknesses and plywood designs used by that mill, the procedure generated a solution that reduced wood loss by 79 percent, thereby increasing net revenue by 6.86 percent. Additional experiments were performed that examined the consequences of changing the number of veneer thicknesses used. Extensions are discussed that permit the consideration of more than one wood species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear singular integral equation of transonic flow is examined, noting that standard numerical techniques are not applicable in solving it. The difficulties in approximating the integral term in this expression were solved by special methods mitigating the inaccuracies caused by standard approximations. It was shown how the infinite domain of integration can be reduced to a finite one; numerical results were plotted demonstrating that the methods proposed here improve accuracy and computational economy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite compulsory mathematics throughout primary and junior secondary schooling, many schools across Australia continue in their struggle to achieve satisfactory numeracy levels. Numeracy is not a distinct subject in school curriculum, and in fact appears as a general capability in the Australian Curriculum, wherein all teachers across all curriculum areas are responsible for numeracy. This general capability approach confuses what numeracy should look like, especially when compared to the structure of numeracy as defined on standardised national tests. In seeking to define numeracy, schools tend to look at past NAPLAN papers, and in doing so, we do not find examples drawn from the various aspects of school curriculum. What we find are more traditional forms of mathematical worded problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of papers have appeared on the application of operational methods and in particular the Laplace transform to problems concerning non-linear systems of one kind or other. This, however, has met with only partial success in solving a class of non-linear problems as each approach has some limitations and drawbacks. In this study the approach of Baycura has been extended to certain third-order non-linear systems subjected to non-periodic excitations, as this approximate method combines the advantages of engineering accuracy with ease of application to such problems. Under non-periodic excitations the method provides a procedure for estimating quickly the maximum response amplitude, which is important from the point of view of a designer. Limitations of such a procedure are brought out and the method is illustrated by an example taken from a physical situation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Past studies that have compared LBB stable discontinuous- and continuous-pressure finite element formulations on a variety of problems have concluded that both methods yield Solutions of comparable accuracy, and that the choice of interpolation is dictated by which of the two is more efficient. In this work, we show that using discontinuous-pressure interpolations can yield inaccurate solutions at large times on a class of transient problems, while the continuous-pressure formulation yields solutions that are in good agreement with the analytical Solution.