941 resultados para Solid Flow-rate


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Double-pass counter flow v-grove collector is considered one of the most efficient solar air-collectors. In this design of the collector, the inlet air initially flows at the top part of the collector and changes direction once it reaches the end of the collector and flows below the collector to the outlet. A mathematical model is developed for this type of collector and simulation is carried out using MATLAB programme. The simulation results were verified with three distinguished research results and it was found that the simulation has the ability to predict the performance of the air collector accurately as proven by the comparison of experimental data with simulation. The difference between the predicted and experimental results is, at maximum, approximately 7% which is within the acceptable limit considering some uncertainties in the input parameter values to allow comparison. A parametric study was performed and it was found that solar radiation, inlet air temperature, flow rate and length has a significant effect on the efficiency of the air collector. Additionally, the results are compared with single flow V-groove collector.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Double-pass counter flow v-grove collector is considered one of the most efficient solar air-collectors. In this design of the collector, the inlet air initially flows at the top part of the collector and changes direction once it reaches the end of the collector and flows below the collector to the outlet. A mathematical model is developed for this type of collector and simulation is carried out using MATLAB programme. The simulation results were verified with three distinguished research results and it was found that the simulation has the ability to predict the performance of the air collector accurately as proven by the comparison of experimental data with simulation. The difference between the predicted and experimental results is, at maximum, approximately 7% which is within the acceptable limit considering some uncertainties in the input parameter values to allow comparison. A parametric study was performed and it was found that solar radiation, inlet air temperature, flow rate and length have a significant effect on the efficiency of the air collector. Additionally, the results are compared with single flow V-groove collector.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerical simulation of a geothermal reservoir, modelled as a bottom-heated square box, filled with water-CO2 mixture is presented in this work. Furthermore, results for two limiting cases of a reservoir filled with either pure water or CO2 are presented. Effects of different parameters including CO2 concentration as well as reservoir pressure and temperature on the overall performance of the system are investigated. It has been noted that, with a fixed reservoir pressure and temperature, any increase in CO2concentration leads to better performance, i.e. stronger convection and higher heat transfer rates. With a fixed CO2 concentration, however, the reservoir pressure and temperature can significantly affect the overall heat transfer and flow rate from the reservoir. Details of such variations are documented and discussed in the present paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The transition from a steady to an unsteady flow induced by an adiabatic fin on the sidewall of a differentially heated air-filled cavity is numerically investigated. Numerical simulations have been performed over the range of Rayleigh numbers from Ra = 105–109. The temporal development and spatial structures of natural convection flows in the cavity with a fin are described. It has been demonstrated that the fin may induce the transition to an unsteady flow and the critical Rayleigh number for the occurrence of the transition is between 3.72 × 106 and 3.73 × 106. Furthermore, the peak frequencies of the oscillations triggered by different mechanisms are obtained through spectral analysis. It has been found that the flow rate through the cavity with a fin is larger than that without a fin under the unsteady flow, indicating that the fin may improve the unsteady flow in the cavity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Computational fluid dynamics (CFD) and particle image velocimetry (PIV) are commonly used techniques to evaluate the flow characteristics in the development stage of blood pumps. CFD technique allows rapid change to pump parameters to optimize the pump performance without having to construct a costly prototype model. These techniques are used in the construction of a bi-ventricular assist device (BVAD) which combines the functions of LVAD and RVAD in a compact unit. The BVAD construction consists of two separate chambers with similar impellers, volutes, inlet and output sections. To achieve the required flow characteristics of an average flow rate of 5 l/min and different pressure heads (left – 100mmHg and right – 20mmHg), the impellers were set at different rotating speeds. From the CFD results, a six-blade impeller design was adopted for the development of the BVAD. It was also observed that the fluid can flow smoothly through the pump with minimum shear stress and area of stagnation which are related to haemolysis and thrombosis. Based on the compatible Reynolds number the flow through the model was calculated for the left and the right pumps. As it was not possible to have both the left and right chambers in the experimental model, the left and right pumps were tested separately.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A method for the determination of imidacloprid in paddy water and soil was developed using liquid chromatography electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). Separation of imidacloprid was carried out on a Shimadzu C18 column (150 mm × 4.6 mm, 4.6 μm) with an acetonitrile?water (50 : 50, v/v) mobile phase containing 0.1% of acetic acid. The flow rate was 0.3 mL/min in isocratic mode. The product ion at 209 m/z was selected for quantification in multiple-reaction monitoring scan mode. Imidacloprid residues in soil were extracted by a solid-liquid extraction method with acetonitrile. Water samples were filtered and directly injected for analysis without extraction. Detection limits of 0.5 μg/kg and 0.3 μg/L were achieved for soil and water samples, respectively. The method had recoveries of 90 ± 2% (n = 4) for soil samples and 100 ± 2% (n = 4) for water samples. A linear relationship was observed throughout the investigated range of concentrations (1-200 μg/L), with the correlation coefficients ranging from 0.999 to 1.000. © Pleiades Publishing, Ltd., 2010.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A fully developed pulsatile flow in a circular rigid tube is analysed by a microcontinuum approach. Solutions for radial variation of axial velocity and cell rotational velocity across the tube are obtained using the momentum integral method. Simplified forms of the solutions are presented for the relevant physiological data. Marked deviations in the results are observed when compared to a Newtonian fluid model. It is interesting to see that there is sufficient reduction in the mass flow rate, phase lag and friction due to the micropolar character of the fluid.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Relationships between freshwater flows and growth rates of the opportunistic predatory finfish barramundi Lates calcarifer in a dry tropical estuary were examined using data from a long-term tag-recapture programme. Lagged effects were not investigated. After accounting for length at release, time at liberty and seasonal variation (e.g. winter, spring, summer and autumn), growth rates were significantly and positively related to fresh water flowing to the estuary. Effects were present at relatively low levels of freshwater flow (i.e. 2.15 m3 s-1, the 5th percentile of the mean flow rate experienced by fish in the study during time at liberty). The analysis, although correlative, provides quantitative evidence to support the hypothesis that freshwater flows are important in driving the productivity of estuaries and can improve growth of species high in the trophic chain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In secondary steelmaking, the enhancement of the reaction rate in the low carbon period during the decarburization of steel is considered the most effective method to produce ultralow carbon steel. In a previous study, it was revealed that the surface reaction is dominant during the final stage of the actual refining process. In order to improve the surface reaction rate, it is necessary to enlarge the reaction region, which is usually achieved by increasing the plume eye area. In this study, water model experiments were carried out to estimate the influence of bottom stirring conditions on the gas-liquid reaction rate; for this purpose, the deoxidation rate during the bottom bubbling process was measured. Five types of nozzle configurations were used to study the effect of the plume eye area on the reaction rate at various gas flow rates. The results reveal that the surface reaction rate is influenced by the gas flow rate and the plume eye area. An empirical correlation was developed for the reaction rate and the plume eye area. This correlation was applied to estimate the gas-liquid reaction rate mat the bath surface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is concerned with the experimental and modeling studies on the smoldering rates of incense sticks as a function of ambient oxygen fraction in air, the flow velocity and size. The experimental results are obtained both for forward and reverse smolder conditions. The results are explained on the basis of surface combustion due to diffusion of oxygen to the surface by both free and forced convection supporting the heat transfer into the solid by conduction, into the stream by convection and the radiant heat transfer from the surface. The heat release at the surface is controlled by the convective transport of the oxidizer to the surface. To obtain the diffusion rates particularly for the reverse smolder, CFD calculations of fluid flow with along with a passive scalar are needed; these calculations have been made both for forward and reverse smolder. The interesting aspect of the CFD calculations is that while the Nusselt umber for forward smolder shows a clear root( Re-u) dependence ( Re-u = Flow Reynolds Number), the result for reverse smolder shows a peak in the variation with Reynolds number with the values lower than for forward smolder and unsteadiness in the flow beyond a certain flow rate. The results of flow behavior and Nusselt number are used in a simple model for the heat transfer at the smoldering surface to obtain the dependence of the smoldering rate on the diameter of the incense stick, the flow rate of air and the oxygen fraction. The results are presented in terms of a correlation for the non-dimensional smoldering rate with radiant flux from the surface and heat generation rate at the surface. The correlations appear reasonable for both forward and reverse smolder cases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An experimental flow loop with He II flow driven by fountain effect pumps (FEPs) is studied with respect to operation at different flow impedances and with thermal loads applied at different positions. The measured values of temperature, flow rate and pressure drop are compared with calculations resulting from a simplified model which assumes ideal performance of the porous plug and of the heat exchangers and which does not take into account Gorter-Mellink (GM) conduction. The main features of the loop are shown to be well described by this model. Refined calculations with a more complex model, including GM conduction of the He II, are only required for predicting the temperature distribution in some discrete regions of the loop.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We use a path-integral approach to calculate the distribution P(w, t) of the fluctuations in the work W at time t of a polymer molecule (modeled as an elastic dumbbell in a viscous solvent) that is acted on by an elongational flow field having a flow rate (gamma) over dot. We find that P(w, t) is non-Gaussian and that, at long times, the ratio P(w, t)/ P (-w, t) is equal to expw/(k(B)T)], independent of (gamma) over dot. On the basis of this finding, we suggest that polymers in elongational flows satisfy a fluctuation theorem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Flow of liquid/liquid dispersions have been investigated in a Hele-Shaw cell which contained a thin disk held between two parallel plates. This device offers a well defined flow field and also permits visual observation of the dispersed drop movement. The dispersed drops coalesce with the disk for the systems where the dispersed phase wets the disk surface. The dispersed phase accumulate at the downstream end of the disk and they detach from there as blobs. Through an accurate measurement of accumulated dispersed phase volume, the coalescence rate was determined. The coalescence efficiency in the Hele Shaw cell is determined by dividing the coalescence hate by the undisturbed flow rate of the dispersed phase through an area equal to the projected area of the disk on a plane normal to the flow direction. The coalescence efficiency first increases and then decreases with the flow rate of dispersion. The coalescence rate/disk dimensions increases with the decrease in the disk dimensions. The rate of coalescence increases with the increase in the dispersed drop diameter and it decreases with the increase in the continuous phase viscosity. The presence of surfactants reduces the coalescence rate. All these results are quantitatively explained through a model, which takes into account several important features like various mechanism of drainage, the roles of dispersion and continuous phase viscosities, and the drop deformation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is important to know and to quantify the liquid holdups both dynamic and static at local levels as it will lead to understand various blast furnace phenomena properly such as slag/metal.gas.solid reactions, gas flow behaviour and interfacial area between the gas/solid/liquid. In the present study, considering the importance of local liquid holdup and non-availability of holdup data in these systems, an attempt has been made to quantify the local holdups in the dropping and around raceway zones in a cold model study using a non-wetting packing for liquid. In order to quantify the liquid holdups at microscopic level, a previously developed technique, X-ray radiography, has been used. It is observed that the liquid flows in preferred paths or channels which carry droplets/rivulets. It has been found that local holdup in some regions of the packed bed is much higher than average at a particular flow rate and this can have important consequences for the correct modelling of such systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ladle constitutes a crucial element in the pouring system for developing process consistency and quality in the manufacture of castings. Flow of molten metal from T-spout ladles, with the spout projecting at an angle from the shell of the ladle, was investigated by simulation, modeling and analysis. This was followed by experimental validation for water flow in translucent models, and verification in a cast iron foundry. Key parameters in the design of a ladle (for its geometry) have been identified as the ladle size, spout diameter and its angle. Velocity and flow rate from a T-spout ladle are governed by and increase with increase in angle of tilt apart from the aforementioned design parameters. Cross section and profile of the issuing jet displaying a stable twisting pattern, during its free-fall of model fluid water and molten metal iron, are notable aspects in the design of the ladle, particularly the spout exit.