88 resultados para Si3N4
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The machining of super alloys resistant to high temperatures such as nickel alloys, inconel 718 specifically, is a very difficult job to obtain improvements in the process, due to the difficulty of machining at high cutting speeds, the use of these alloys in industries showed great developments in recent years, its application in aeronautical industry spread being used in vane turbo, compressor parts, props and set elements. The automotive, chemical, medical and others also took advantage of the great features of inconel 718 and has used the material. The high temperature resistant alloys have high machining difficulty, a fact that is associated with high cutting forces generated during machining which result in high temperatures. High levels of temperatures can cause deterioration of the cutting edge, with subsequent deformation or breakage, wear most common obtained in machining such materials are flank wear the formation of built-up edge for cutting and notch wear. The experimental part of the work consists in machining of nickel-based alloy Inconel 718 heat treated for hardness, using a tool based ceramic silicon nitride Sandvik (Si3N4) in order to compare the best results obtained in the master's thesis of SANTOS (2010) who used a tool ceramics also the basis of silicon nitride which was developed in the doctoral thesis of SOUZA (2005). Assays were performed on a CNC lathe and was noted for each cutting edge results obtained. Tests were made starting from an initial condition of the tool with cutting speed of 200 m/min, feed 0.5 mm and 0.5 mm depth of cut was reduced cutting speed for the subsequent tests with the same conditions of feed and depth of cut. The tool presented wear instant under two 200 m/min and 100 m/min, premature rupture of 50 m/min and finally cut provided with difficulty... (Complete abstract click electronic access below)
Resumo:
The need for development of new materials is a natural process in the companies’ technological point of view, seeking improvements in materials and processes. Specifically, among the materials, ceramic exhibit valuable properties, especially the covalent ceramics which have excellent properties for applications which requires the abrasion resistance, hardness, high temperatures, resistence, etc. being a material that has applications in several areas. Most studies are related to improvement of properties, specially fracture toughness that allows the expansion of its application. Among the most promising ceramic materials are silicon nitride (Si3N4) which has excellent properties. The goal of this work was the development and caracterization of Si3N4-based ceramics, doped with yttrium oxide (Y2O3), rar earth concentrate (CTR2O3) and cerium oxide (CeO2) in the same proportion for the evaluation of properties. The powders' mixtures were homogenized, dried and compressed under pressure uniaxial and isostatic. Sintering was carried out in 1850 ⁰C under pressure of 0,1MPa N2 for 1 h with a heating rate of 25 ⁰C / min and cooling in the furnace inertia. The characterizations were performed using Archimedes principle to relative density, weight loss by measuring before and after sintering, phase analysis by X-ray diffraction, microstructure by scanning electron microscope (SEM), hardness and fracture toughness by the method Vickers indentation. The results obtained showed relative density of 97-98%, Vickers hardness 17 to 19 GPa, fracture toughness 5.6 to 6.8 MPa.m1/2, with phases varying from α-SiAlON and β-Si3N4 depending the types of additives used. The results are promising for tribological applications and can be defined according to the types of additives to be used
Resumo:
The objective of this work was the obtaining in situ of alpha-SiAlON-SiC composite, using an alternative rare-earth oxide mixture, RE2O3, as sintering additive, by two different sintering processes. As sintering additive, 20 vol.% of AlN-RE2O3 in a molar ratio of 90: 10 was mixed to the alpha-Si3N4 powder. In the Si3N4-AlN-RE2O3 powder mixture, 0, 10, 15 and 20wt.% of SiC were added. The powder batches were milled, dried and compacted by cold isostatic pressing. Two different sintering processes were used: gas-pressure sintering at 1950 degrees C for 1 h under 1.5 MPa of N-2 atmosphere, or uniaxial hot-pressing at 1750 degrees C, for 30 min under pressure of 20 MPa. The sintered samples were characterized by X-ray diffraction, scanning electron microscopy and mechanical properties. XRD patterns indicate only alpha-SiAlON (alpha') and beta-SiC as crystalline phases. It was observed that the SiC addition did not influence the alpha-SiAlON formation, although the growth of elongated alpha'-grains is substantially decreased. The hot-pressed composites presented better mechanical properties, exhibiting fracture toughness of 5 MPa m(1/2) and hardness around 21.5 GPa. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In a ball-on-disc wear test, an alumina ceramic body sliding against a silicon nitride ceramic body in water achieved an ultra-low friction coefficient (ULFC) of 0.004. The profilometer and EDX measurements indicated that the ULFC regime in this unmated Al2O3-Si3N4 pair was achieved because of the formation of a flat and smooth interface of nanometric roughness, which favored the hydrodynamic lubrication. The triboreactions formed silicon and aluminum hydroxides which contributed to decrease roughness and shear stress at the contact interface. This behavior enables the development of low energy loss water-based tribological systems using oxide ceramics. 13 2012 Elsevier B.V. All rights reserved.
Resumo:
Il silicio, materiale di base per la realizzazione di gran parte dei dispositivi microelettronici, non trova largo impiego in fotonica principalmente a causa delle sue proprietà elettromagnetiche: oltre ad un band-gap indiretto, il silicio presenta difatti una elevata simmetria reticolare che non permette la presenza di alcuni effetti, come quello elettro-ottico, che sono invece utilmente sfruttati in altri materiali per la fotonica. E’ stato recentemente dimostrato che la deformazione indotta dalla deposizione di film ad alto stress intrinseco potrebbe indurre alcuni di questi effetti, rompendo le simmetrie della struttura. In questo lavoro di tesi viene studiata, mediante simulazioni, microfabbricazione di dispositivi, e caratterizzazione sperimentale, la deformazione reticolare indotta su strutture di tipo ridge micrometriche in silicio mediante deposizione di un film di Si3N4. La deformazione e’ stata analizzata tramite simulazione, utilizzando il metodo agli elementi finiti ed analisi di strain tramite la tecnica di microscopia ottica a trasmissione Convergent-Beam Electron Diffraction. Questa tecnica permette di ottenere delle mappe 2D di strain con risoluzione spaziale micrometrica e sensibilita’ dell’ordine di 100microstrain. Il confronto fra le simulazioni e le misure ha messo in evidenza un accordo quantitativo fra le due analisi, da una parte confermando la validità del modello numerico utilizzato e dall’altro verificando l’accuratezza della tecnica di misura, impiegata innovativamente su strutture di questo tipo. Si sono inoltre stimate le grandezze ottiche: birifrangenza e variazione dell’indice di rifrazione efficace rispetto al caso deformato.di una guida SOI su cui e’ deposto uno strato di nituro. I valori stimati, per uno spessore di 350 nm sono rispettivamente di 0.014 e -0.00475. Questi valori lasciano credere che la tecnologia sia promettente, e che un’evoluzione nei processi di fabbricazione in grado migliorare il controllo delle deformazione potrebbe aprire la strada ad un utilizzo del silicio deformato nella realizzazione di dispositivi ottici ed elettro-ottici.
Resumo:
L’obiettivo del lavoro di tesi è quello di studiare l’integrazione del grafene con i processi tecnologici propri della tecnologia del silicio, per la realizzazione di dispositivi innovativi per la misura delle proprietà termiche e termoelettriche del grafene che sono tra le meno studiate ad oggi. L’attività sperimentale svolta, ha riguardato l’intero processo di produzione, processing ed integrazione tecnologica del grafene. Da una parte è stato messo a punto un processo ottimizzato, partendo da una approfondita ricerca bibliografica, per il trasferimento delle membrane dai substrati di crescita, in rame, a quelli di destinazione, SiO2 e Si3N4, mantenendo la completa compatibilità con i processi della microelettronica del silicio in particolare per quanto riguarda l’eliminazione dei residui metallici dalla sintesi. Dall’altra è stata sviluppata una procedura di patterning micrometrico del grafene, affidabile e riproducibile, e, soprattutto, compatibile con la microelettronica del silicio. Le membrane, cresciute tramite deposizione da fase vapore (Chemical Vapor Deposition), sono state caratterizzate tramite la microscopia elettronica, a scansione e in trasmissione, la microscopia ottica, spettroscopia Raman e microscopia a forza atomica, tecniche che sono state utilizzate per caratterizzare i campioni durante l'intero processo di patterning. Il processo di etching del grafene in ossigeno, realizzato con il plasma cleaner, strumento che nasce per la pulizia di campioni per microscopia elettronica, è stato messo a punto il attraverso una estesa attività di test sia dei parametri di funzionamento dello strumento che del fotoresist da utilizzare. La procedura di patterning micrometrico vera e propria, ha comportato di affrontare diverse classi di problemi, dalla rimozione del fotoresist con soluzioni diverse (soluzione di sviluppo dedicata e/o acetone) alla rimozione dei residui presenti sulle membrane di grafene anche a valle del patterning stesso. La rimozione dei residui tramite acido cloridrico, insieme ad una procedura di annealing a 400°C in aria per la rimozione dei residui del fotoresist polimerico che erano presenti a valle dell’etching in ossigeno, ha permesso di ottenere un patterning del grafene ben definito su scala micrometrica e una ridottissima presenza di residui. Le procedure ottimizzate di trasferimento e di patterning sono il principale avanzamento rispetto allo stato dell’arte. Le metodiche messe a punto in questo lavoro, consentiranno di integrare il grafene direttamente nel processo di micro-fabbricazione di dispositivi per misure termiche e termoelettriche, per i quali quali sono in realizzazione le maschere di processo che rappresentando la naturale conclusione del lavoro di tesi.
Resumo:
This work describes the structural and piezoelectric assessment of aluminum nitride (AlN) thin films deposited by pulsed-DC reactive sputtering on insulating substrates. We investigate the effect of different insulating seed layers on AlN properties (crystallinity, residual stress and piezoelectric activity). The seed layers investigated, silicon nitride (Si3N4), silicon dioxide (SiO2), amorphous tantalum oxide (Ta2O5), and amorphous or nano-crystalline titanium oxide (TiO2) are deposited on glass plates to a thickness lower than 100 nm. Before AlN films deposition, their surface is pre-treated with a soft ionic cleaning, either with argon or nitrogen ions. Only AlN films grown of TiO2 seed layers exhibit a significant piezoelectric activity to be used in acoustic device applications. Pure c-axis oriented films, with FWHM of rocking curve of 6º, stress below 500 MPa, and electromechanical coupling factors measured in SAW devices of 1.25% are obtained. The best AlN films are achieved on amorphous TiO2 seed layers deposited at high target power and low sputtering pressure. On the other hand, AlN films deposited on Si3N4, SiO2 and TaOx exhibit a mixed orientation, high stress and very low piezoelectric activity, which invalidate their use in acoustic devices.
Resumo:
In this paper we describe the fabrication and frequency characterization of different structures intended for the lateral excitation of shear modes in AlN c-axis-oriented films, which are at the same time designed to minimize the excitation of longitudinal modes. Laterally excited resonators were built on partially metallic (SiO2, W) and insulating (SiOC, Si3N4) acoustic mirrors built on silicon substrates, and on insulating mirrors (SiO2, TaOx) built on insulating glass plates. TiOx seed layers were used to stimulate the growth of highly c-axis oriented AlN films, which was confirmed by XRD and SAW measurements. Coplanar Mo electrodes of different geometries were defined on top of the AlN films to excite the shear modes. All the structures analyzed displayed a clear longitudinal mode, corresponding to an acoustic velocity of 11000 m/s, but a null or extremely weak shear response corresponding to a sound velocity of around 6350 m/s. The simulation of the frequency response based on Mason's model confirms that the shear resonance is extremely weak. The observed longitudinal modes are attributed either to the field applied between the electrodes and a conductive plane (metallic layer or Si substrate) or to the electric field parallel to the c-axis in the edges of the electrodes or in tilted grains. The low excitation of shear modes is attributed to the very low values of electric field strength parallel to the surface.
Resumo:
The first dark characterization of a thermometer fabricated with our Mo/Au bilayers to be used as a transition edge sensor is presented. High-quality, stress-free Mo layers, whose thickness is used to tune the critical temperature (TC ) down to 100 mK, are deposited by sputtering at room temperature (RT ) on Si3N4 bulk and membranes, and protected from degradation with a 15-nm sputtered Au layer. An extra layer of high-quality Au is deposited by ex situ e-beam to ensure low residual resistance. The thermometer is patterned on a membrane using standard photolithographic techniques and wet etching processes, and is contacted through Mo paths, displaying a sharp superconducting transition (α ≈ 600). Results show a good coupling between Mo and Au layers and excellent TC reproducibility, allowing to accurately correlate dM o and TC . Since dAu is bigger than ξM for all analyzed samples, bilayer residual resistance can be modified without affecting TC . Finally, first current to voltage measurements at different temperatures are measured and analyzed, obtaining the corresponding characterization parameters.
Resumo:
The usage of more inexpensive silicon feedstock for crystallizing mc-Si blocks promises cost reduction for the photovoltaic market. For example, less expensive substrates of upgraded metallurgical silicon (UMG-Si) are used as a mechanical support for the epitaxial solar cell. This feedstock has higher content of impurities which influences cell performance and mechanical strength of the wafers. Thus, it is of importance to know these effects in order to know which impurities should be preferentially removed or prevented during the crystallization process. Metals like aluminum (Al) can decrease the mechanical strength due to micro-cracking of the silicon matrix and introduction of high values of thermal residual stress. Additionally, silicon oxide (SiOx) lowers the mechanical strength of mc-Si due to thermal residual stresses and stress intensification when an external load is applied in the surrounding of the particle. Silicon carbide (SiC) introduces thermal residual stresses and intensifies slightly the stress in the surrounding of the particle but can have a toughening effect on the silicon matrix. Finally, silicon nitride (Si3N4) does not influence significantly the mechanical strength of mc- Si and can have a toughening effect on the silicon matrix.
Resumo:
In order to power our planet for the next century, clean energy technologies need to be developed and deployed. Photovoltaic solar cells, which convert sunlight into electricity, are a clear option; however, they currently supply 0.1% of the US electricity due to the relatively high cost per Watt of generation. Thus, our goal is to create more power from a photovoltaic device, while simultaneously reducing its price. To accomplish this goal, we are creating new high efficiency anti-reflection coatings that allow more of the incident sunlight to be converted to electricity, using simple and inexpensive coating techniques that enable reduced manufacturing costs. Traditional anti-reflection coatings (consisting of thin layers of non-absorbing materials) rely on the destructive interference of the reflected light, causing more light to enter the device and subsequently get absorbed. While these coatings are used on nearly all commercial cells, they are wavelength dependent and are deposited using expensive processes that require elevated temperatures, which increase production cost and can be detrimental to some temperature sensitive solar cell materials. We are developing two new classes of anti-reflection coatings (ARCs) based on textured dielectric materials: (i) a transparent, flexible paper technology that relies on optical scattering and reduced refractive index contrast between the air and semiconductor and (ii) silicon dioxide (SiO2) nanosphere arrays that rely on collective optical resonances. Both techniques improve solar cell absorption and ultimately yield high efficiency, low cost devices. For the transparent paper-based ARCs, we have recently shown that they improve solar cell efficiencies for all angles of incident illumination reducing the need for costly tracking of the sun’s position. For a GaAs solar cell, we achieved a 24% improvement in the power conversion efficiency using this simple coating. Because the transparent paper is made from an earth abundant material (wood pulp) using an easy, inexpensive and scalable process, this type of ARC is an excellent candidate for future solar technologies. The coatings based on arrays of dielectric nanospheres also show excellent potential for inexpensive, high efficiency solar cells. The fabrication process is based on a Meyer rod rolling technique, which can be performed at room-temperature and applied to mass production, yielding a scalable and inexpensive manufacturing process. The deposited monolayer of SiO2 nanospheres, having a diameter of 500 nm on a bare Si wafer, leads to a significant increase in light absorption and a higher expected current density based on initial simulations, on the order of 15-20%. With application on a Si solar cell containing a traditional anti-reflection coating (Si3N4 thin-film), an additional increase in the spectral current density is observed, 5% beyond what a typical commercial device would achieve. Due to the coupling between the spheres originated from Whispering Gallery Modes (WGMs) inside each nanosphere, the incident light is strongly coupled into the high-index absorbing material, leading to increased light absorption. Furthermore, the SiO2 nanospheres scatter and diffract light in such a way that both the optical and electrical properties of the device have little dependence on incident angle, eliminating the need for solar tracking. Because the layer can be made with an easy, inexpensive, and scalable process, this anti-reflection coating is also an excellent candidate for replacing conventional technologies relying on complicated and expensive processes.