978 resultados para Shortest path problem
Resumo:
Exercises and solutions in PDF
Resumo:
Exam questions and solutions in LaTex
Resumo:
We present an algorithm for computing exact shortest paths, and consequently distances, from a generalized source (point, segment, polygonal chain or polygonal region) on a possibly non-convex polyhedral surface in which polygonal chain or polygon obstacles are allowed. We also present algorithms for computing discrete Voronoi diagrams of a set of generalized sites (points, segments, polygonal chains or polygons) on a polyhedral surface with obstacles. To obtain the discrete Voronoi diagrams our algorithms, exploiting hardware graphics capabilities, compute shortest path distances defined by the sites
Resumo:
The origins of early farming and its spread to Europe have been the subject of major interest for some time. The main controversy today is over the nature of the Neolithic transition in Europe: the extent to which the spread was, for the most part, indigenous and animated by imitatio (cultural diffusion) or else was driven by an influx of dispersing populations (demic diffusion). We analyze the spatiotemporal dynamics of the transition using radiocarbon dates from 735 early Neolithic sites in Europe, the Near East, and Anatolia. We compute great-circle and shortest-path distances from each site to 35 possible agricultural centers of origin—ten are based on early sites in the Middle East and 25 are hypothetical locations set at 58 latitude/longitude intervals. We perform a linear fit of distance versus age (and vice versa) for each center. For certain centers, high correlation coefficients (R . 0.8) are obtained. This implies that a steady rate or speed is a good overall approximation for this historical development. The average rate of the Neolithic spread over Europe is 0.6–1.3 km/y (95% confidence interval). This is consistent with the prediction of demic diffusion(0.6–1.1 km/y). An interpolative map of correlation coefficients, obtained by using shortest-path distances, shows that the origins of agriculture were most likely to have occurred in the northern Levantine/Mesopotamian area
Resumo:
This paper introduces a new variant of the popular n-dimensional hypercube network Q(n), known as the n-dimensional locally twisted cube LTQ(n), which has the same number of nodes and the same number of connections per node as Q(n). Furthermore. LTQ(n) is similar to Q(n) in the sense that the nodes can be one-to-one labeled with 0-1 binary sequences of length n. so that the labels of any two adjacent nodes differ in at most two successive bits. One advantage of LTQ(n) is that the diameter is only about half of the diameter of Q(n) We develop a simple routing algorithm for LTQ(n), which creates a shortest path from the source to the destination in O(n) time. We find that LTQ(n) consists of two disjoint copies of Q(n) by adding a matching between their nodes. On this basis. we show that LTQ(n) has a connectivity of n.
Resumo:
This paper presents a novel mobile sink area allocation scheme for consumer based mobile robotic devices with a proven application to robotic vacuum cleaners. In the home or office environment, rooms are physically separated by walls and an automated robotic cleaner cannot make a decision about which room to move to and perform the cleaning task. Likewise, state of the art cleaning robots do not move to other rooms without direct human interference. In a smart home monitoring system, sensor nodes may be deployed to monitor each separate room. In this work, a quad tree based data gathering scheme is proposed whereby the mobile sink physically moves through every room and logically links all separated sub-networks together. The proposed scheme sequentially collects data from the monitoring environment and transmits the information back to a base station. According to the sensor nodes information, the base station can command a cleaning robot to move to a specific location in the home environment. The quad tree based data gathering scheme minimizes the data gathering tour length and time through the efficient allocation of data gathering areas. A calculated shortest path data gathering tour can efficiently be allocated to the robotic cleaner to complete the cleaning task within a minimum time period. Simulation results show that the proposed scheme can effectively allocate and control the cleaning area to the robot vacuum cleaner without any direct interference from the consumer. The performance of the proposed scheme is then validated with a set of practical sequential data gathering tours in a typical office/home environment.
Resumo:
This work maps and analyses cross-citations in the areas of Biology, Mathematics, Physics and Medicine in the English version of Wikipedia, which are represented as an undirected complex network where the entries correspond to nodes and the citations among the entries are mapped as edges. We found a high value of clustering coefficient for the areas of Biology and Medicine, and a small value for Mathematics and Physics. The topological organization is also different for each network, including a modular structure for Biology and Medicine, a sparse structure for Mathematics and a dense core for Physics. The networks have degree distributions that can be approximated by a power-law with a cut-off. The assortativity of the isolated networks has also been investigated and the results indicate distinct patterns for each subject. We estimated the betweenness centrality of each node considering the full Wikipedia network, which contains the nodes of the four subjects and the edges between them. In addition, the average shortest path length between the subjects revealed a close relationship between the subjects of Biology and Physics, and also between Medicine and Physics. Our results indicate that the analysis of the full Wikipedia network cannot predict the behavior of the isolated categories since their properties can be very different from those observed in the full network. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Specific choices about how to represent complex networks can have a substantial impact on the execution time required for the respective construction and analysis of those structures. In this work we report a comparison of the effects of representing complex networks statically by adjacency matrices or dynamically by adjacency lists. Three theoretical models of complex networks are considered: two types of Erdos-Renyi as well as the Barabasi-Albert model. We investigated the effect of the different representations with respect to the construction and measurement of several topological properties (i.e. degree, clustering coefficient, shortest path length, and betweenness centrality). We found that different forms of representation generally have a substantial effect on the execution time, with the sparse representation frequently resulting in remarkably superior performance. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The relationship between the structure and function of biological networks constitutes a fundamental issue in systems biology. Particularly, the structure of protein-protein interaction networks is related to important biological functions. In this work, we investigated how such a resilience is determined by the large scale features of the respective networks. Four species are taken into account, namely yeast Saccharomyces cerevisiae, worm Caenorhabditis elegans, fly Drosophila melanogaster and Homo sapiens. We adopted two entropy-related measurements (degree entropy and dynamic entropy) in order to quantify the overall degree of robustness of these networks. We verified that while they exhibit similar structural variations under random node removal, they differ significantly when subjected to intentional attacks (hub removal). As a matter of fact, more complex species tended to exhibit more robust networks. More specifically, we quantified how six important measurements of the networks topology (namely clustering coefficient, average degree of neighbors, average shortest path length, diameter, assortativity coefficient, and slope of the power law degree distribution) correlated with the two entropy measurements. Our results revealed that the fraction of hubs and the average neighbor degree contribute significantly for the resilience of networks. In addition, the topological analysis of the removed hubs indicated that the presence of alternative paths between the proteins connected to hubs tend to reinforce resilience. The performed analysis helps to understand how resilience is underlain in networks and can be applied to the development of protein network models.
Resumo:
A geodesic in a graph G is a shortest path between two vertices of G. For a specific function e(n) of n, we define an almost geodesic cycle C in G to be a cycle in which for every two vertices u and v in C, the distance d(G)(u, v) is at least d(C)(u, v) - e(n). Let omega(n) be any function tending to infinity with n. We consider a random d-regular graph on n vertices. We show that almost all pairs of vertices belong to an almost geodesic cycle C with e(n)= log(d-1)log(d-1) n+omega(n) and vertical bar C vertical bar =2 log(d-1) n+O(omega(n)). Along the way, we obtain results on near-geodesic paths. We also give the limiting distribution of the number of geodesics between two random vertices in this random graph. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 66: 115-136, 2011
Resumo:
Verbal fluency is the ability to produce a satisfying sequence of spoken words during a given time interval. The core of verbal fluency lies in the capacity to manage the executive aspects of language. The standard scores of the semantic verbal fluency test are broadly used in the neuropsychological assessment of the elderly, and different analytical methods are likely to extract even more information from the data generated in this test. Graph theory, a mathematical approach to analyze relations between items, represents a promising tool to understand a variety of neuropsychological states. This study reports a graph analysis of data generated by the semantic verbal fluency test by cognitively healthy elderly (NC), patients with Mild Cognitive Impairment – subtypes amnestic(aMCI) and amnestic multiple domain (a+mdMCI) - and patients with Alzheimer’s disease (AD). Sequences of words were represented as a speech graph in which every word corresponded to a node and temporal links between words were represented by directed edges. To characterize the structure of the data we calculated 13 speech graph attributes (SGAs). The individuals were compared when divided in three (NC – MCI – AD) and four (NC – aMCI – a+mdMCI – AD) groups. When the three groups were compared, significant differences were found in the standard measure of correct words produced, and three SGA: diameter, average shortest path, and network density. SGA sorted the elderly groups with good specificity and sensitivity. When the four groups were compared, the groups differed significantly in network density, except between the two MCI subtypes and NC and aMCI. The diameter of the network and the average shortest path were significantly different between the NC and AD, and between aMCI and AD. SGA sorted the elderly in their groups with good specificity and sensitivity, performing better than the standard score of the task. These findings provide support for a new methodological frame to assess the strength of semantic memory through the verbal fluency task, with potential to amplify the predictive power of this test. Graph analysis is likely to become clinically relevant in neurology and psychiatry, and may be particularly useful for the differential diagnosis of the elderly.
Resumo:
Self-organizing maps (SOM) are artificial neural networks widely used in the data mining field, mainly because they constitute a dimensionality reduction technique given the fixed grid of neurons associated with the network. In order to properly the partition and visualize the SOM network, the various methods available in the literature must be applied in a post-processing stage, that consists of inferring, through its neurons, relevant characteristics of the data set. In general, such processing applied to the network neurons, instead of the entire database, reduces the computational costs due to vector quantization. This work proposes a post-processing of the SOM neurons in the input and output spaces, combining visualization techniques with algorithms based on gravitational forces and the search for the shortest path with the greatest reward. Such methods take into account the connection strength between neighbouring neurons and characteristics of pattern density and distances among neurons, both associated with the position that the neurons occupy in the data space after training the network. Thus, the goal consists of defining more clearly the arrangement of the clusters present in the data. Experiments were carried out so as to evaluate the proposed methods using various artificially generated data sets, as well as real world data sets. The results obtained were compared with those from a number of well-known methods existent in the literature
Resumo:
The complex behavior of a wide variety of phenomena that are of interest to physicists, chemists, and engineers has been quantitatively characterized by using the ideas of fractal and multifractal distributions, which correspond in a unique way to the geometrical shape and dynamical properties of the systems under study. In this thesis we present the Space of Fractals and the methods of Hausdorff-Besicovitch, box-counting and Scaling to calculate the fractal dimension of a set. In this Thesis we investigate also percolation phenomena in multifractal objects that are built in a simple way. The central object of our analysis is a multifractal object that we call Qmf . In these objects the multifractality comes directly from the geometric tiling. We identify some differences between percolation in the proposed multifractals and in a regular lattice. There are basically two sources of these differences. The first is related to the coordination number, c, which changes along the multifractal. The second comes from the way the weight of each cell in the multifractal affects the percolation cluster. We use many samples of finite size lattices and draw the histogram of percolating lattices against site occupation probability p. Depending on a parameter, ρ, characterizing the multifractal and the lattice size, L, the histogram can have two peaks. We observe that the probability of occupation at the percolation threshold, pc, for the multifractal is lower than that for the square lattice. We compute the fractal dimension of the percolating cluster and the critical exponent β. Despite the topological differences, we find that the percolation in a multifractal support is in the same universality class as standard percolation. The area and the number of neighbors of the blocks of Qmf show a non-trivial behavior. A general view of the object Qmf shows an anisotropy. The value of pc is a function of ρ which is related to its anisotropy. We investigate the relation between pc and the average number of neighbors of the blocks as well as the anisotropy of Qmf. In this Thesis we study likewise the distribution of shortest paths in percolation systems at the percolation threshold in two dimensions (2D). We study paths from one given point to multiple other points. In oil recovery terminology, the given single point can be mapped to an injection well (injector) and the multiple other points to production wells (producers). In the previously standard case of one injection well and one production well separated by Euclidean distance r, the distribution of shortest paths l, P(l|r), shows a power-law behavior with exponent gl = 2.14 in 2D. Here we analyze the situation of one injector and an array A of producers. Symmetric arrays of producers lead to one peak in the distribution P(l|A), the probability that the shortest path between the injector and any of the producers is l, while the asymmetric configurations lead to several peaks in the distribution. We analyze configurations in which the injector is outside and inside the set of producers. The peak in P(l|A) for the symmetric arrays decays faster than for the standard case. For very long paths all the studied arrays exhibit a power-law behavior with exponent g ∼= gl.
Resumo:
The Hiker Dice was a game recently proposed in a software designed by Mara Kuzmich and Leonardo Goldbarg. In the game a dice is responsible for building a trail on an n x m board. As the dice waits upon a cell on the board, it prints the side that touches the surface. The game shows the Hamiltonian Path Problem Simple Maximum Hiker Dice (Hidi-CHS) in trays Compact Nth , this problem is then characterized by looking for a Hamiltonian Path that maximize the sum of marked sides on the board. The research now related, models the problem through Graphs, and proposes two classes of solution algorithms. The first class, belonging to the exact algorithms, is formed by a backtracking algorithm planed with a return through logical rules and limiting the best found solution. The second class of algorithms is composed by metaheuristics type Evolutionary Computing, Local Ramdomized search and GRASP (Greed Randomized Adaptative Search). Three specific operators for the algorithms were created as follows: restructuring, recombination with two solutions and random greedy constructive.The exact algorithm was teste on 4x4 to 8x8 boards exhausting the possibility of higher computational treatment of cases due to the explosion in processing time. The heuristics algorithms were tested on 5x5 to 14x14 boards. According to the applied methodology for evaluation, the results acheived by the heuristics algorithms suggests a better performance for the GRASP algorithm
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA