259 resultados para Shiga-toxina


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infection with Shiga-toxin producing Escherichia coli (STEC) may result in the development of the haemolytic-uremic syndrome (HUS), the main cause of acute renal failure in children. While O157:H7 STEC are associated with large outbreaks of HUS, it is difficult to predict whether a non-O157:H7 isolate can be pathogenic for humans. The mucosal innate immune response plays a central role in the pathogenesis of HUS; therefore, we compared the induction of IL-8 and CCL20 in human colon epithelial cells infected with strains belonging to different serotypes, isolated from cattle or from HUS patients. No correlation was observed between strain virulence and chemokine gene expression. Rather, the genetic background of the strains seems to determine the chemokine gene expression profile. Investigating the contribution of different bacterial factors in this process, we show that the type III secretion system of O157:H7 bacteria, but not the intimate adhesion, is required to stimulate the cells. In addition, H7, H10, and H21 flagellins are potent inducers of chemokine gene expression when synthesized in large amount.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Only a subset of Shiga toxin (Stx)-producing Escherichia coli (STEC) are human pathogens, but the characteristics that account for differences in pathogenicity are not well understood. In this study, we investigated the distribution of the stx variants coding for Stx2 and its variants in highly virulent STEC of seropathotype A and low-pathogenic STEC of seropathotype C. We analysed and compared transcription of the corresponding genes, production of Shiga toxins, and stx-phage release in basal as well as in induced conditions. We found that the stx(2) variant was mainly associated with strains of seropathotype A, whereas most of the strains of seropathotype C possessed the stx(2-vhb) variant, which was frequently associated with stx(2), stx(2-vha) or stx(2c). Levels of stx(2) and stx(2)-related mRNA were higher in strains belonging to seropathotype A and in those strains of seropathotype C that express the stx(2) variant than in the remaining strains of seropathotype C. The stx(2-vhb) genes were the least expressed, in basal as well as in induced conditions, and in many cases did not seem to be carried by an inducible prophage. A clear correlation was observed between stx mRNA levels and stx-phage DNA in the culture supernatants, suggesting that most stx(2)-related genes are expressed only when they are carried by a phage. In conclusion, some relationship between stx(2)-related gene expression in vitro and the seropathotype of the STEC strains was observed. A higher expression of the stx(2) gene and a higher release of its product, in basal as well as in induced conditions, was observed in pathogenic strains of seropathotype A. A subset of strains of seropathotype C shows the same characteristics and could be a high risk to human health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Escherichia coli O157:H7 is a food-borne pathogen causing hemorrhagic colitis and hemolytic-uremic syndrome, especially in children. The main virulence factor responsible for the more serious disease is the Shiga toxin 2 (Stx2), which is released in the gut after oral ingestion of the organism. Although it is accepted that the amount of Stx2 produced by E. coli O157:H7 in the gut is critical for the development of disease, the eukaryotic or prokaryotic gut factors that modulate Stx2 synthesis are largely unknown. In this study, we examined the influence of prokaryotic molecules released by a complex human microbiota on Stx2 synthesis by E. coli O157:H7. Stx2 synthesis was assessed after growth of E. coli O157:H7 in cecal contents of gnotobiotic rats colonized with human microbiota or in conditioned medium having supported the growth of complex human microbiota. Extracellular prokaryotic molecules produced by the commensal microbiota repress stx(2) mRNA expression and Stx2 production by inhibiting the spontaneous and induced lytic cycle mediated by RecA. These molecules, with a molecular mass of below 3 kDa, are produced in part by Bacteroides thetaiotaomicron, a predominant species of the normal human intestinal microbiota. The microbiota-induced stx(2) repression is independent of the known quorum-sensing pathways described in E. coli O157:H7 involving SdiA, QseA, QseC, or autoinducer 3. Our findings demonstrate for the first time the regulatory activity of a soluble factor produced by the complex human digestive microbiota on a bacterial virulence factor in a physiologically relevant context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cattle are a natural reservoir for Shiga toxigenic Escherichia coli (STEC), however, no data are available on the prevalence and their possible association with organic or conventional farming practices. We have therefore studied the prevalence of STEC and specifically O157:H7 in Swiss dairy cattle by collecting faeces from approximately 500 cows from 60 farms with organic production (OP) and 60 farms with integrated (conventional) production (IP). IP farms were matched to OP farms and were comparable in terms of community, agricultural zone, and number of cows per farm. E. coli were grown overnight in an enrichment medium, followed by DNA isolation and PCR analysis using specific TaqMan assays. STEC were detected in all farms and O157:H7 were present in 25% of OP farms and 17% of IP farms. STEC were detected in 58% and O157:H7 were evidenced in 4.6% of individual faeces. Multivariate statistical analyses of over 250 parameters revealed several risk-factors for the presence of STEC and O157:H7. Risk-factors were mainly related to the potential of cross-contamination of feeds and cross-infection of cows, and age of the animals. In general, no significant differences between the two farm types concerning prevalence or risk for carrying STEC or O157:H7 were observed. Because the incidence of human disease caused by STEC in Switzerland is low, the risk that people to get infected appears to be small despite a relatively high prevalence in cattle. Nevertheless, control and prevention practices are indicated to avoid contamination of animal products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La neurotoxina botulínica es producida por la bacteria anaerobia Clostridium botulinum (NTBo). Bloquea la transmisión neuromuscular por lo cual es utilizada para el tratamiento de enfermedades con hiperactividad muscular, bloqueando la liberación de acetilcolina y así la transmisión sináptica en la unión neuromuscular, lo que lleva al debilitamiento y atrofia de los músculos. Este mecanismo de acción motivó el uso de la toxina botulínica en las enfermedades con elevado tono muscular, como la distonía y la espasticidad, por lo cual también ha revolucionado la opción de tratamiento de los trastornos autónomos de hipersecreción. La sialorrea es un síntoma común en diversas enfermedades neurológicas. Las inyecciones de toxina botulínica, guiadas por ultrasonidos en las glándulas salivales, produce una disminución de la salivación excesiva en niños con deficiencias neurológicas como parálisis cerebral. La utilización de la toxina botulínica tipo A ha sido sugerida como tratamiento de la sialorrea en pacientes con parálisis cerebral (PC). Esta recomendación ha sido hecha por el efecto anticolinérgico de esta sustancia, principalmente por su capacidad para bloquear la liberación de acetilcolina a nivel de las membranas pre-sinápticas Aunque la respuesta al tratamrento es distinta en cada niño, en general se ha observado que cuanto más a menudo se utiliza la toxlna botulínica y más alta es la dosis utilizada, los resultados son mejores. Los expertos consideran conveniente el procedimiento porque muchos de estos pacientes están utilizando la toxina botulínica para sus problemas musculares y las distrntas condiciones pueden ser tratadas al mismo tiempo Se reporta la descripción de la aplicación de toxina botulínica en una paciente niña que concurre al Instituto de Rehabilitación Infantil TELETON de la ciudad de Valparaíso, Chile, con un trastorno motor severo y con salivación incontrolada persistente que provoca enfermedades respiratorias a repetición

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Escherichia coli O157:H7 causes Shiga toxin (Stx)-mediated vascular damage, resulting in hemorrhagic colitis and the hemolytic uremic syndrome in humans. These infections are often foodborne, and healthy carrier cattle are a major reservoir of E. coli O157:H7. We were interested in knowing why cattle are tolerant to infection with E. coli O157:H7. Cattle tissues were examined for the Stx receptor globotriaosylceramide (Gb3), for receptivity to Stx binding in vitro, and for susceptibility to the enterotoxic effects of Stx in vivo. TLC was used to detect Gb3 in tissues from a newborn calf. Gb3 was detected by TLC in kidney and brain, but not in the gastrointestinal tract. Immunohistochemistry was used to define binding of Stx1 and Stx2 overlaid onto sections from cattle tissues. Stx1 and Stx2 bound to selected tubules in the cortex of the kidney of both newborn calves (n = 3) and adult cattle (n = 3). Stx did not bind to blood vessels in any of the six gastrointestinal and five extraintestinal organs examined. The lack of Gb3 and of Stx receptivity in the gastrointestinal tract raised questions about the toxicity of Stx in bovine intestine. We found that neither viable E. coli O157:H7 nor Stx-containing bacterial extracts were enterotoxic (caused fluid accumulation) in ligated ileal loops in newborn calves. The lack of vascular receptors for Stx provides insight into why cattle are tolerant reservoir hosts for E. coli O157:H7.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Meiji 32-nen... shuppan ontodokezumi"--Colophon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stx2d is a recently described Shiga toxin whose cytotoxicity is activated 10- to 1,000-fold by the elastase present in mouse or human intestinal mucus. We examined Shiga toxigenic Escherichia coli (STEC) strains isolated from food and livestock sources for the presence of activatable stx(2d). The stx(2) operons of STEC were first analyzed by PCR-restriction fragment length polymorphism (RFLP) analysis and categorized as stx(2), stx(2c) (vha), stx(2c) (vhb), or stx(2d) (EH250). Subsequently, the stx(2c) (vha) and stx(2c) (vhb) operons were screened for the absence of a PstI site in the stx(2a) subunit gene, a restriction site polymorphism which is a predictive indicator for the stx(2d) (activatable) genotype. Twelve STEC isolates carrying putative stx(2d) operons were identified, and nucleotide sequencing was used to confirm the identification of these operons as stx(2d). The complete nucleotide sequences of seven representative stx(2d) operons were determined. Shiga toxin expression in stx(2d) isolates was confirmed by immunoblotting. stx(2d) isolates were induced for the production of bacteriophages carrying stx. Two isolates were able to produce bacteriophages phi1662a and phi1720a carrying the stx(2d) operons. RFLP analysis of bacteriophage genomic DNA revealed that phi1662a and phi1720a were highly related to each other; however, the DNA sequences of these two stx(2d) operons were distinct. The STEC strains carrying these operons were isolated from retail ground beef. Surveillance for STEC strains expressing activatable stx(2d) Shiga toxin among clinical cases may indicate the significance of this toxin subtype to human health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated host-related factors that influence intestinal colonization by Shiga-toxigenic E. coli (STEC). A quantitative colonization assay was developed to comparatively measure attachment of STEC to bovine colonic tissues maintained in vitro. No differences were determined in colonization susceptibility between tissues derived from weaning calves and adult cattle, or for tissues from cattle fed grain and forage-based rations. Substrate conditions designed to represent various intra-enteric environments were tested for their effect on STEC/mucosal interaction. Under conditions corresponding to a well-fed ruminant (high volatile fatty acid and lactate concentrations, low pH), significantly less STEC colonized the mucosal surface of colonic biopsies. These results may help explain why fasted. poorly or intermittently fed cattle and pre-ruminant calves excrete STEC to a greater degree. Studies on the ecology of STEC within the ruminant gut help identify mechanisms to reduce their threat to public health.