823 resultados para Sequential Mapping
Resumo:
Background: There is only limited knowledge on how the quantification of valvular regurgitation by color Doppler is affected by changing blood viscosity. This study was designed to evaluate the effect of changing blood viscosity on the vena contracta width using an in vitro model of valvular insufficiency capable of providing ample variation in the rate and stroke volume. Methods: We constructed a pulsatile flow model filled with human blood at varying hematocrit (15%, 35%, and 55%) and corresponding blood viscosity (blood/water viscosity: 2.6, 4.8, 9.1) levels in which jets were driven through a known orifice (7 mm(2)) into a 110 mL compliant receiving chamber (compliance: 2.2 mL/mmHg) by a pulsatile pump. In addition, we used variable pump stroke volumes (5, 7.5, and 10 mL) and rates (40, 60, and 80 ppm). Vena contracta region was imaged using a 3.5 MHz transducer. Pressure and volume in the flow model were kept constant during each experimental condition, as well as ultrasound settings. Results: Blood viscosity variation in the experimental range did not induce significant changes in vena contracta dimensions. Also, vena contracta width did not change from normal to low hematocrit and viscosity levels. A very modest increase only in vena contracta dimension was observed at very high level of blood viscosity when hematocrit was set to 55% . Pump rate, in the evaluated range, did not influence vena contracta width. These results in controlled experimental settings suggest that the vena contracta is an accurate quantitative method for quantifying valvular regurgitation even when this condition is associated with anemia, a frequent finding in patients with valvular heart disease.
Resumo:
In the present study, we investigated whether saliva from Phlebotomus papatasi and Phlebotomus duboscqi inhibited antigen-induced neutrophil migration and the mechanisms involved in these effects. The pretreatment of immunized mice with salivary gland extracts (SGE) of both phlebotomines inhibited OVA challenge-induced neutrophil migration and release of the neutrophil chemotactic mediators, MIP-1 alpha, TNF-alpha, and leukotriene B-4 (LTB4). Furthermore, SGE treatment enhanced the production of anti-inflammatory mediators, IL-10 and PGE(2). SGE treatments failed to inhibit neutrophil migration and MIP-1 alpha and LTB4 production in IL-10(-/-) mice, also failing in mice treated with nonselective (indomethacin) or selective (rofecoxibe) cyclooxygenase (COX) inhibitors. COX inhibition resulted in diminished SGE-induced IL-10 production, and PGE(2) release triggered by SGE remained increased in IL-10(-/-) mice, suggesting that prostanoids are acting through an IL-10-dependent mechanism. SGE treatments in vivo reduced the OVA-induced lymphoproliferation of spleen-derived cells. Further, the in vitro incubation of bone marrow-derived dendritic cells (DC) with SGE inhibited the proliferation of CD4(+) T cells from OVA-immunized mice, which was reversed by indomethacin and anti-IL-10 antibody treatments. Supporting these results, SGE induced the production of PGE(2) and IL-10 by DC, which were blocked by COX inhibition. These effects were associated with the reduction of DC-membrane expression of MHC-II and CD86 by SGE treatment. Altogether, the results showed that Phlebotomine saliva inhibits immune inflammation-induced neutrophil migration by an autocrine DC sequential production of PGE(2)/IL-10, suggesting that the saliva constituents might be promising therapeutic molecules to target immune inflammatory diseases.
Resumo:
Background-Puncture of the atrial appendage may provide access to the pericardial space. The aim of this study was to evaluate the feasibility of epicardial mapping and ablation through an endocardial transatrial access in a swine model. Methods and Results-An 8-F Mullins sheath was used to perforate the right (n=16) or left (n=1) atrial appendage in 17 pigs (median weight, 27.5 kg; first and third quartiles [Q1, Q3], 25.2, 30.0 kg). A 7-F ablation catheter was introduced into the pericardial space to perform epicardial mapping and deliver radiofrequency pulses on the atria. The pericardial space was entered in all 17 animals. In 15 (88%) animals, there was no hemodynamic instability (mean blood pressure monitoring, initial median, 80 mm Hg; Q1, Q3, 70, 86 mm Hg; final median, 88 mm Hg; Q1, Q3, 80, 96 mm Hg; P=0.426). In these 15, a mild hemorrhagic pericardial effusion was identified and aspirated (median, 20 mL; Q1, Q3, 15, 30 mL) during the procedure, and postmortem gross analysis revealed that the atrial perforation was closed in these animals. In 2 (12%) of the 17 animals, there was major pericardial bleeding with hemodynamic collapse. On gross examination, it was found that pericardial space was accessed through right ventricular perforation in 1 animal and the tricuspid annulus in the other. After the initial study, we used an occlusion device in 3 other animals to attempt to seal the puncture (2 at the right atrial appendage and 1 at the right ventricle). These 3 animals had no significant pericardial bleeding. Conclusions-Transatrial endovascular right atrial appendage puncture may provide a potential alternative route for pericardial access. Further studies are needed to evaluate its safety with longer and more-complex procedures before being applied in clinical settings. (Circ Arrhythm Electrophysiol. 2011;4:331-336.)
Resumo:
Tonic immobility behavior (TI) is an innate response characterized by profound motor inhibition that is exhibited by prey when physical contact with a predator is prolonged and the situation inescapable. The periaqueductal gray matter (PAG) is intimately associated with the somatic and autonomic components of defensive reactions. This study investigated whether the TI response was able to recruit specific functional columns of the PAG by examining c-fos immunolocalization in guinea pigs. In the TI group, the innate response was invoked in animals through inversion and physical contention for at least 15 min. In the control group, the animals were physically manipulated only. Our results demonstrate that the defensive behavior of TI is capable of promoting the expression of Fos protein in different areas of the PAG, with higher levels of staining in the ventrolateral (vI) and lateral (I) columns. In addition, our results demonstrate increased Fos immunoreactivity (FOS-IR) in the dorsal raphe nucleus, the Edinger-Westphal nucleus, the cuneiform nucleus and the superior colliculus. In contrast, there were no significant alterations in the number of FOS-IR cells in the inferior colliculus or the oculomotor nucleus. Analysis of the results suggests that neuronal activation after the TI response differs by functional column of the PAG. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Increased nitrogen loading has been implicated in eutrophication occurrences worldwide. Much of this loading is attributable to the growing human population along the world's coastlines. A significant component of this nitrogen input is from sewage effluent, and delineation of the distribution and biological impact of sewage-derived nitrogen is becoming increasingly important. Here, we show a technique that identifies the source, extent and fate of biologically available sewage nitrogen in coastal marine ecosystem. This method is based on the uptake of sewage nitrogen by marine plants and subsequent analysis of the sewage signature (elevated delta N-15) in plant tissues. Spatial analysis is used to create maps of delta N-15 and establish coefficient of variation estimates of the mapped values. We show elevated delta N-15 levels in marine plants near sewage outfalls in Moreton Bay, Australia, a semi-enclosed bay receiving multiple sewage inputs. These maps of sewage nitrogen distribution are being used to direct nutrient reduction strategies in the region and will assist in monitoring the effectiveness of environmental protection measures. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Novel current density mapping (CDM) schemes are developed for the design of new actively shielded, clinical magnetic resonance imaging (MRI) magnets. This is an extended inverse method in which the entire potential solution space for the superconductors has been considered, rather than single current density layers. The solution provides an insight into the required superconducting coil pattern for a desired magnet configuration. This information is then used as an initial set of parameters for the magnet structure, and a previously developed hybrid numerical optimization technique is used to obtain the final geometry of the magnet. The CDM scheme is applied to the design of compact symmetric, asymmetric, and open architecture 1.0-1.5 T MRI magnet systems of novel geometry and utility. A new symmetric 1.0-T system that is just I m in length with a full 50-cm diameter of the active, or sensitive, volume (DSV) is detailed, as well as an asymmetric system in which a 50-cm DSV begins just 14 cm from the end of the coil structure. Finally a 1.0-T open magnet system with a full 50-cm DSV is presented. These new designs provide clinically useful homogeneous regions and have appropriately restricted stray fields but, in some of the designs, the DSV is much closer to the end of the magnet system than in conventional designs. These new designs have the potential to reduce patient claustrophobia and improve physician access to patients undergoing scans. (C) 2002 Wiley Periodicals, Inc.