945 resultados para Semiconducting II-VI materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystallites of semiconductors, especially those belonging to II-VI and III-V groups, show size-dependent optical and electrical properties. In this paper we report on x-ray photoemission results of CdS nanocrystallites of two different sizes and compare these results with bulk CdS. The S 2p and 2s core levels of the nanocrystallites reveal three different types of sulfur, unlike bulk CdS, which shows only one kind of sulfur species. Details of the spectroscopic results provide estimates of the size of the nanocrystallites, while also indicating the origin of the stability of such small clusters. [S0163-1829(99)03811-4].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavily Mn-doped II-VI-V-2 semiconductors, such as CdGeP2 and ZnGeP2 have been prepared by depositing Mn on single crystalline substrate at nearly 400 T in an ultra high vacuum chamber. Well-defined ferromagnetic hysteresis with a saturation behavior appears in the magnetization curve up to above room temperature. The chemical states of the ZDGeP(2):Mn interface has been clarified by a careful in situ photoemission spectroscopy. The as-prepared surface consists of Ge-rich, metallic Mn compound. In and below the sub-surface region, dilute divalent Mn species as precursors of the DMS phase exist. No MnP phase was observed at any stage of the depth profile. Theoretical band-calculation suggests that the system with vacancies (Cd, V-c, Mn)GeP2 or a non-stoichiometric (Cd, Ge, Mn)GeP2 are ferromagnetic and energetically stable although ferromagnetism is not stable in a stoichiometric compound (Cd, Mn)GeP2. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of InAsxSb1-x films on (100) GaSb substrates by liquid-phase epitaxy (LPE) has been investigated and epitaxial InAs0.3Sb0.7 films with InAs0.9Sb0.09 buffer layers have been successfully obtained. The low X-ray rocking curve FHWM values of InAs0.3Sb0.7 layer shows the high quality of crystal-orientation structure. Hall measurements show that the highest electron mobility in the samples obtained is 2.9 x 10(4) cm(2) V-1 s(-1) and the carrier density is 2.78 x 10(16)cm(-3) at room temperature (RT). The In As0.3Sb0.7 films grown on (10 0) GaSb substrates exhibit excellent optical performance with a cut-off wavelength of 12 mu m. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prospect of terawatt-scale electricity generation using a photovoltaic (PV) device places strict requirements on the active semiconductor optoelectronic properties and elemental abundance. After reviewing the constraints placed on an "earth-abundant" solar absorber, we find zinc phosphide (α-Zn3P2) to be an ideal candidate. In addition to its near-optimal direct band gap of 1.5 eV, high visible-light absorption coefficient (>104 cm-1), and long minority-carrier diffusion length (>5 μm), Zn3P2 is composed of abundant Zn and P elements and has excellent physical properties for scalable thin-film deposition. However, to date, a Zn3P2 device of sufficient efficiency for commercial applications has not been demonstrated. Record efficiencies of 6.0% for multicrystalline and 4.3% for thin-film cells have been reported, respectively. Performance has been limited by the intrinsic p-type conductivity of Zn3P2 which restricts us to Schottky and heterojunction device designs. Due to our poor understanding of Zn3P2 interfaces, an ideal heterojunction partner has not yet been found.

The goal of this thesis is to explore the upper limit of solar conversion efficiency achievable with a Zn3P2 absorber through the design of an optimal heterojunction PV device. To do so, we investigate three key aspects of material growth, interface energetics, and device design. First, the growth of Zn3P2 on GaAs(001) is studied using compound-source molecular-beam epitaxy (MBE). We successfully demonstrate the pseudomorphic growth of Zn3P2 epilayers of controlled orientation and optoelectronic properties. Next, the energy-band alignments of epitaxial Zn3P2 and II-VI and III-V semiconductor interfaces are measured via high-resolution x-ray photoelectron spectroscopy in order to determine the most appropriate heterojunction partner. From this work, we identify ZnSe as a nearly ideal n-type emitter for a Zn3P2 PV device. Finally, various II-VI/Zn3P2 heterojunction solar cells designs are fabricated, including substrate and superstrate architectures, and evaluated based on their solar conversion efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I. Schottky barriers produced by polymeric sulfur nitride, (SN)x, on nine common III-V and II-VI compound semiconductors are compared to barriers formed by Au. The conductor (SN)x produces significantly higher barriers to n-type semiconductors and lower barriers to p-type semiconductors than Au, the most electronegative elemental metal. The barrier height improvement, defined as ɸ(SN)x - ɸ(Au), is smaller on covalent semiconductors than on ionic semiconductors; (SN)x barriers follow the ionic-covalent transition. Details of (SN)x film deposition, samples preparation, and barrier height measurements are described.

II. The rate of dissolution of amorphous Si into solid Al is measured. The rate of movement of the amorphous Si/Al interface is found to be much faster than predicted by a simple model of the transport of Si through Al. This result is related to defects in the growth of epitaxial Si using the solid phase epitaxy process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cr2+掺杂II-VI族化合物在中红外波段的输出,在气体检测、遥感、通信、眼科医学、神经外科等领域有着重要的应用前景。目前已经获得了最大1.7 W的连续输出功率,18.5 W的平均脉冲功率,1100 nm的调谐范围和最窄4 ps的脉宽。对Cr2+:ZnSe连续、脉冲、随机纳米激光器以及其它的Cr2+掺杂II-VI族化合物激光器的最新的国内外研究进展进行了综述。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p-n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu2O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu2O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu2O films are reported. It is known from previously published work that the formation of pure Cu2O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu2O thin films (as opposed to CuO or mixed phase CuO/Cu2O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu2O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a controlled amount of oxygen, can produce good quality p-type transparent Cu2O films with electrical resistivity ranging from 102 to 104 Ω-cm, hole mobility of 1-10 cm2/V-s, and optical band-gap of 2.0-2.6 eV. These material properties make this low temperature deposited HiTUS Cu 2O film suitable for fabrication of p-type metal oxide thin film transistors. Furthermore, the capability to deposit Cu2O films with low film stress at low temperatures on plastic substrates renders this approach favourable for fabrication of flexible p-n junction solar cells. © 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using first-principles band structure methods, we have systematically studied the electronic structures, magnetic stabilities, and half-metal properties of 3d transition-metal (TM) doped Rocksalt MgO compounds TMMg3O4 (TM = V, Cr, Mn, Fe, Co, and Ni). The calculations reveal that only CrMg3O4 has a ferromagnetic stability among the six compounds, which is explained by double-exchange mechanism. The magnetic stability is affected by the doping concentration of TM if the top valance band is composed of partially occupied t(2g) states. In addition, CrMg3O4 is a half-metallic ferromagnet. The origins of half-metallic and ferromagnetic properties are explored. The Curie temperature (T-c) of CrMg3O4 is 182 K. And it is hard for CrMg3O4 to deform due to the large bulk modulus and shear modulus, so it is a promising spintronic material. Our calculations provide the first available information on the magnetic properties of 3d TM-doped MgO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using first-principles methods we have calculated electronic structures, optical properties, and hole conductivities of CuXO2 (X=Y, Sc, and Al). We show that the direct optical band gaps of CuYO2 and CuScO2 are approximately equal to their fundamental band gaps and the conduction bands of them are localized. The direct optical band gaps of CuXO2 (X=Y, Sc, and Al) are 3.3, 3.6, and 3.2 eV, respectively, which are consistent with experimental values of 3.5, 3.7, and 3.5 eV. We find that the hole mobility along long lattice c is higher than that along other directions through calculating effective masses of the three oxides. By analyzing band offset we find that CuScO2 has the highest valence band maximum (VBM) among CuXO2 (X=Y, Sc, and Al). In addition, the approximate transitivity of band offset suggests that CuScO2 has a higher VBM than CuGaO2 and CuInO2 [Phys. Rev. Lett. 88, 066405 (2002)]. We conclude that CuScO2 has a higher p-type doping ability in terms of the doping limit rule. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2991157]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of metamorphic high electron mobility transistors (MMHEMTs) with different V/III flux ratios are grown on GaAs (001) substrates by molecular beam epitaxy (XIBE). The samples are analysed by using atomic force microscopy (AFM), Hall measurement, and low temperature photoluminescence (PL). The optimum V/III ratio in a range from 15 to 60 for the growth of MMHEMTs is found to be around 40. At this ratio, the root mean square (RMS) roughness of the material is only 2.02 nm; a room-temperature mobility and a sheet electron density are obtained to be 10610.0cm(2)/(V.s) and 3.26 x 10(12)cm(-2) respectively. These results are equivalent to those obtained for the same structure grown on InP substrate. There are two peaks in the PL spectrum of the structure, corresponding to two sub-energy levels of the In0.53Ga0.47 As quantum well. It is found that the photoluminescence intensities of the two peaks vary with the V/III ratio, for which the reasons are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our Raman measurement indicates that the intensity of the peaks (510 and 645 cm(-1)) related to nitrogen concentration is enhanced in MgZnO compared with that in ZnO. Using first-principles band structure methods, we calculated the formation energy and transition energy level for nitrogen acceptor in ZnO and random MgxZn1-xO (with x=0.25) alloy. Our calculations show that the incorporation of nitrogen can be enhanced as Mg is alloyed into ZnO, which agrees with our experiments. The acceptor energy level deeper in the alloy ascribes to the downward shift of the valence-band maximum edge in the presence of magnesium. (c) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AlGaInP/GaInP quantum well intermixing phenomena induced by Zn impurity diffusion at 540 degrees C were studied using room-temperature photo luminescence (PL) spectroscopy. As the diffusion time increased from 40 to 120 min, PL blue shift taken on the AlGaInP/GaInP quantum well regions increased from 36.3 to 171.6 meV. Moreover, when the diffusion time was equal to or above 60 min, it was observed firstly that a PL red shift occurred with a PL blue shift on the samples. After detailed analysis, it was found that the red-shift PL spectra were measured on the Ga0.51In0.49P buffer layer of the samples, and the mechanism of the PL red shift and the PL blue shift were studied qualitatively. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By employing first-principle total-energy calculations, a systematic study of the dopability of ZnS to be both n- and p-types compared with that of ZnO is carried out. We find that all the attempted acceptor dopants, group V substituting on the S lattice site and group I and IB on the Zn sites in ZnS, have lower ionization energies than the corresponding ones in ZnO. This can be accounted for by the fact that ZnS has relative higher valence band maximum than ZnO. Native ZnS is weak p-type under S-rich condition, as the abundant acceptor V-Zn has rather large ionization energy. Self-compensations by the formation of interstitial donors in group I and IB-doped p-type ZnS can be avoided when sample is prepared under S-rich condition. In terms of ionization energies, Li-Zn and N-S are the preferred acceptors in ZnS. Native n- type doping of ZnS is limited by the spontaneous formation of intrinsic V-Zn(2-); high efficient n-type doping with dopants is harder to achieve than in ZnO because of the readiness of forming native compensating centers and higher ionization energy of donors in ZnS. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3103585]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The valence band offsets of the wurtzite polar C-plane and nonpolar A-plane InN/ZnO heterojunctions are directly determined by x-ray photoelectron spectroscopy to be 1.76 +/- 0.2 eV and 2.20 +/- 0.2 eV. The heterojunctions form in the type-I straddling configuration with a conduction band offsets of 0.84 +/- 0.2 eV and 0.40 +/- 0.2 eV. The difference of valence band offsets of them mainly attributes to the spontaneous polarization effect. Our results show important face dependence for InN/ZnO heterojunctions, and the valence band offset of A-plane heterojunction is more close to the "intrinsic" valence band offset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron spin relaxation induced by phonon-mediated s-d exchange interaction in a II-VI diluted magnetic semiconductor quantum dot is investigated theoretically. The electron-acoustic phonon interaction due to piezoelectric coupling and deformation potential is included. The resulting spin lifetime is typically on the order of microseconds. The effectiveness of the phonon-mediated spin-flip mechanism increases with increasing Mn concentration, electron spin splitting, vertical confining strength, and lateral diameter, while it shows nonmonotonic dependence on the magnetic field and temperature. An interesting finding is that the spin relaxation in a small quantum dot is suppressed for strong magnetic field and low Mn concentration at low temperature.