991 resultados para Segmentation methods
Resumo:
Introduction: Gamma Knife surgery (GKS) is a noninvasive neurosurgical stereotactic procedure, increasingly used as an alternative to open functional procedures. This includes the targeting of the ventrointermediate nucleus of the thalamus (e.g., Vim) for tremor. Objective: To enhance anatomic imaging for Vim GKS using high-field (7 T) MRI and Diffusion Weighted Imaging (DWI). Methods: Five young healthy subjects and two patients were scanned both on 3 and 7 T MRI. The protocol was the same in all cases, and included: T1-weighted (T1w) and DWI at 3T; susceptibility weighted images (SWI) at 7T for the visualization of thalamic subparts. SWI was further integrated into the Gamma Plan Software® (LGP, Elekta Instruments, AB, Sweden) and co-registered with 3T images. A simulation of targeting of the Vim was done using the quadrilatere of Guyot. Furthermore, a correlation with the position of the found target on SWI and also on DWI (after clustering of the different thalamic nuclei) was performed. Results: For the 5 healthy subjects, there was a good correlation between the position of the Vim on SWI, DWI and the GKS targeting. For the patients, on the pretherapeutic acquisitions, SWI helped in positioning the target. For posttherapeutic sequences, SWI supposed position of the Vim matched the corresponding contrast enhancement seen at follow-up MRI. Additionally, on the patient's follow-up T1w images, we could observe a small area of contrast-enhancement corresponding to the target used in GKS (e.g., Vim), which belongs to the Ventral-Lateral-Ventral (VLV) nuclei group. Our clustering method resulted in seven thalamic groups. Conclusion: The use of SWI provided us with a superior resolution and an improved image contrast within the central gray matter, enabling us to directly visualize the Vim. We additionally propose a novel robust method for segmenting the thalamus in seven anatomical groups based on DWI. The localization of the GKS target on the follow-up T1w images, as well as the position of the Vim on 7 T, have been used as a gold standard for the validation of VLV cluster's emplacement. The contrast enhancement corresponding to the targeted area was always localized inside the expected cluster, providing strong evidence of the VLV segmentation accuracy. The anatomical correlation between the direct visualization on 7T and the current targeting methods on 3T (e.g., quadrilatere of Guyot, histological atlases, DWI) seems to show a very good anatomical matching.
Resumo:
In this work we study the classification of forest types using mathematics based image analysis on satellite data. We are interested in improving classification of forest segments when a combination of information from two or more different satellites is used. The experimental part is based on real satellite data originating from Canada. This thesis gives summary of the mathematics basics of the image analysis and supervised learning , methods that are used in the classification algorithm. Three data sets and four feature sets were investigated in this thesis. The considered feature sets were 1) histograms (quantiles) 2) variance 3) skewness and 4) kurtosis. Good overall performances were achieved when a combination of ASTERBAND and RADARSAT2 data sets was used.
Resumo:
Speaker diarization is the process of sorting speeches according to the speaker. Diarization helps to search and retrieve what a certain speaker uttered in a meeting. Applications of diarization systemsextend to other domains than meetings, for example, lectures, telephone, television, and radio. Besides, diarization enhances the performance of several speech technologies such as speaker recognition, automatic transcription, and speaker tracking. Methodologies previously used in developing diarization systems are discussed. Prior results and techniques are studied and compared. Methods such as Hidden Markov Models and Gaussian Mixture Models that are used in speaker recognition and other speech technologies are also used in speaker diarization. The objective of this thesis is to develop a speaker diarization system in meeting domain. Experimental part of this work indicates that zero-crossing rate can be used effectively in breaking down the audio stream into segments, and adaptive Gaussian Models fit adequately short audio segments. Results show that 35 Gaussian Models and one second as average length of each segment are optimum values to build a diarization system for the tested data. Uniting the segments which are uttered by same speaker is done in a bottom-up clustering by a newapproach of categorizing the mixture weights.
Resumo:
The papermaking industry has been continuously developing intelligent solutions to characterize the raw materials it uses, to control the manufacturing process in a robust way, and to guarantee the desired quality of the end product. Based on the much improved imaging techniques and image-based analysis methods, it has become possible to look inside the manufacturing pipeline and propose more effective alternatives to human expertise. This study is focused on the development of image analyses methods for the pulping process of papermaking. Pulping starts with wood disintegration and forming the fiber suspension that is subsequently bleached, mixed with additives and chemicals, and finally dried and shipped to the papermaking mills. At each stage of the process it is important to analyze the properties of the raw material to guarantee the product quality. In order to evaluate properties of fibers, the main component of the pulp suspension, a framework for fiber characterization based on microscopic images is proposed in this thesis as the first contribution. The framework allows computation of fiber length and curl index correlating well with the ground truth values. The bubble detection method, the second contribution, was developed in order to estimate the gas volume at the delignification stage of the pulping process based on high-resolution in-line imaging. The gas volume was estimated accurately and the solution enabled just-in-time process termination whereas the accurate estimation of bubble size categories still remained challenging. As the third contribution of the study, optical flow computation was studied and the methods were successfully applied to pulp flow velocity estimation based on double-exposed images. Finally, a framework for classifying dirt particles in dried pulp sheets, including the semisynthetic ground truth generation, feature selection, and performance comparison of the state-of-the-art classification techniques, was proposed as the fourth contribution. The framework was successfully tested on the semisynthetic and real-world pulp sheet images. These four contributions assist in developing an integrated factory-level vision-based process control.
Resumo:
Objective of this thesis was to map possibilities for systematic supplier management in field of chemical process industry. Through this study it was aimed to develop a tool for supplier management that could be integrated with operations in business unit. With developed tool suppliers should be able to be segmented based on their willingness and capability, and segmentation could be applied in purchasing decisions. In this thesis there was made a survey of methods that are recognized in literature to manage and allocate suppliers. This thesis recognizes segmentation as a method to group and select suppliers in procurement. Based on literature, a proposal for segmentation framework and evaluation criteria factors will be constituted. Based on theoretical proposal, in an expertise workshop a final segmentation framework was constituted, which covers segments with descriptions and evaluation part. Evaluation part includes an evaluation framework which helps to score suppliers with selected factors and leads to total grades in willingness and capability. These total grades will be the coordinates and they determine the segment where the supplier under evaluation belongs. In this thesis segments definitions, objectives, and road maps will be described.
Resumo:
This thesis presents a framework for segmentation of clustered overlapping convex objects. The proposed approach is based on a three-step framework in which the tasks of seed point extraction, contour evidence extraction, and contour estimation are addressed. The state-of-art techniques for each step were studied and evaluated using synthetic and real microscopic image data. According to obtained evaluation results, a method combining the best performers in each step was presented. In the proposed method, Fast Radial Symmetry transform, edge-to-marker association algorithm and ellipse fitting are employed for seed point extraction, contour evidence extraction and contour estimation respectively. Using synthetic and real image data, the proposed method was evaluated and compared with two competing methods and the results showed a promising improvement over the competing methods, with high segmentation and size distribution estimation accuracy.
Resumo:
The purpose of this study was to expand the applicability of supplier segmentation and development approaches to the project-driven construction industry. These practices are less exploited and not well documented in this operational environment compared to the process-centric manufacturing industry. At first, portfolio models to supply base segmentation and various supplier development efforts were investigated in literature review. A step-wise framework was structured for the empirical research. The empirical study employed multiple research methods in three case studies in a large Finnish construction company. The first study categorized the construction item classes into the purchasing portfolio and positioned suppliers to the power matrix by investigating buyer-supplier relations. Using statistical tests, the study also identified factors that affect suppliers’ performance. The final case study identified improvement areas of the interface between a main contractor and one if its largest suppliers. The final results indicate that only by assessing the supply base in a holistic manner and the power circumstances in it, buyers comprehend how to best establish appropriate supplier development strategies in the project environment.
Resumo:
Companies require information in order to gain an improved understanding of their customers. Data concerning customers, their interests and behavior are collected through different loyalty programs. The amount of data stored in company data bases has increased exponentially over the years and become difficult to handle. This research area is the subject of much current interest, not only in academia but also in practice, as is shown by several magazines and blogs that are covering topics on how to get to know your customers, Big Data, information visualization, and data warehousing. In this Ph.D. thesis, the Self-Organizing Map and two extensions of it – the Weighted Self-Organizing Map (WSOM) and the Self-Organizing Time Map (SOTM) – are used as data mining methods for extracting information from large amounts of customer data. The thesis focuses on how data mining methods can be used to model and analyze customer data in order to gain an overview of the customer base, as well as, for analyzing niche-markets. The thesis uses real world customer data to create models for customer profiling. Evaluation of the built models is performed by CRM experts from the retailing industry. The experts considered the information gained with help of the models to be valuable and useful for decision making and for making strategic planning for the future.
Resumo:
Les systèmes statistiques de traduction automatique ont pour tâche la traduction d’une langue source vers une langue cible. Dans la plupart des systèmes de traduction de référence, l'unité de base considérée dans l'analyse textuelle est la forme telle qu’observée dans un texte. Une telle conception permet d’obtenir une bonne performance quand il s'agit de traduire entre deux langues morphologiquement pauvres. Toutefois, ceci n'est plus vrai lorsqu’il s’agit de traduire vers une langue morphologiquement riche (ou complexe). Le but de notre travail est de développer un système statistique de traduction automatique comme solution pour relever les défis soulevés par la complexité morphologique. Dans ce mémoire, nous examinons, dans un premier temps, un certain nombre de méthodes considérées comme des extensions aux systèmes de traduction traditionnels et nous évaluons leurs performances. Cette évaluation est faite par rapport aux systèmes à l’état de l’art (système de référence) et ceci dans des tâches de traduction anglais-inuktitut et anglais-finnois. Nous développons ensuite un nouvel algorithme de segmentation qui prend en compte les informations provenant de la paire de langues objet de la traduction. Cet algorithme de segmentation est ensuite intégré dans le modèle de traduction à base d’unités lexicales « Phrase-Based Models » pour former notre système de traduction à base de séquences de segments. Enfin, nous combinons le système obtenu avec des algorithmes de post-traitement pour obtenir un système de traduction complet. Les résultats des expériences réalisées dans ce mémoire montrent que le système de traduction à base de séquences de segments proposé permet d’obtenir des améliorations significatives au niveau de la qualité de la traduction en terme de le métrique d’évaluation BLEU (Papineni et al., 2002) et qui sert à évaluer. Plus particulièrement, notre approche de segmentation réussie à améliorer légèrement la qualité de la traduction par rapport au système de référence et une amélioration significative de la qualité de la traduction est observée par rapport aux techniques de prétraitement de base (baseline).
Resumo:
This paper presents methods for moving object detection in airborne video surveillance. The motion segmentation in the above scenario is usually difficult because of small size of the object, motion of camera, and inconsistency in detected object shape etc. Here we present a motion segmentation system for moving camera video, based on background subtraction. An adaptive background building is used to take advantage of creation of background based on most recent frame. Our proposed system suggests CPU efficient alternative for conventional batch processing based background subtraction systems. We further refine the segmented motion by meanshift based mode association.
Resumo:
This paper describes a novel framework for automatic segmentation of primary tumors and its boundary from brain MRIs using morphological filtering techniques. This method uses T2 weighted and T1 FLAIR images. This approach is very simple, more accurate and less time consuming than existing methods. This method is tested by fifty patients of different tumor types, shapes, image intensities, sizes and produced better results. The results were validated with ground truth images by the radiologist. Segmentation of the tumor and boundary detection is important because it can be used for surgical planning, treatment planning, textural analysis, 3-Dimensional modeling and volumetric analysis
Resumo:
This work presents an efficient method for volume rendering of glioma tumors from segmented 2D MRI Datasets with user interactive control, by replacing manual segmentation required in the state of art methods. The most common primary brain tumors are gliomas, evolving from the cerebral supportive cells. For clinical follow-up, the evaluation of the pre- operative tumor volume is essential. Tumor portions were automatically segmented from 2D MR images using morphological filtering techniques. These seg- mented tumor slices were propagated and modeled with the software package. The 3D modeled tumor consists of gray level values of the original image with exact tumor boundary. Axial slices of FLAIR and T2 weighted images were used for extracting tumors. Volumetric assessment of tumor volume with manual segmentation of its outlines is a time-consuming proc- ess and is prone to error. These defects are overcome in this method. Authors verified the performance of our method on several sets of MRI scans. The 3D modeling was also done using segmented 2D slices with the help of a medical software package called 3D DOCTOR for verification purposes. The results were validated with the ground truth models by the Radi- ologist.
Resumo:
There has been recent interest in using temporal difference learning methods to attack problems of prediction and control. While these algorithms have been brought to bear on many problems, they remain poorly understood. It is the purpose of this thesis to further explore these algorithms, presenting a framework for viewing them and raising a number of practical issues and exploring those issues in the context of several case studies. This includes applying the TD(lambda) algorithm to: 1) learning to play tic-tac-toe from the outcome of self-play and of play against a perfectly-playing opponent and 2) learning simple one-dimensional segmentation tasks.
Resumo:
Stimuli outside classical receptive fields have been shown to exert significant influence over the activities of neurons in primary visual cortexWe propose that contextual influences are used for pre-attentive visual segmentation, in a new framework called segmentation without classification. This means that segmentation of an image into regions occurs without classification of features within a region or comparison of features between regions. This segmentation framework is simpler than previous computational approaches, making it implementable by V1 mechanisms, though higher leve l visual mechanisms are needed to refine its output. However, it easily handles a class of segmentation problems that are tricky in conventional methods. The cortex computes global region boundaries by detecting the breakdown of homogeneity or translation invariance in the input, using local intra-cortical interactions mediated by the horizontal connections. The difference between contextual influences near and far from region boundaries makes neural activities near region boundaries higher than elsewhere, making boundaries more salient for perceptual pop-out. This proposal is implemented in a biologically based model of V1, and demonstrated using examples of texture segmentation and figure-ground segregation. The model performs segmentation in exactly the same neural circuit that solves the dual problem of the enhancement of contours, as is suggested by experimental observations. Its behavior is compared with psychophysical and physiological data on segmentation, contour enhancement, and contextual influences. We discuss the implications of segmentation without classification and the predictions of our V1 model, and relate it to other phenomena such as asymmetry in visual search.
Resumo:
El processament d'imatges mèdiques és una important àrea de recerca. El desenvolupament de noves tècniques que assisteixin i millorin la interpretació visual de les imatges de manera ràpida i precisa és fonamental en entorns clínics reals. La majoria de contribucions d'aquesta tesi són basades en Teoria de la Informació. Aquesta teoria tracta de la transmissió, l'emmagatzemament i el processament d'informació i és usada en camps tals com física, informàtica, matemàtica, estadística, biologia, gràfics per computador, etc. En aquesta tesi, es presenten nombroses eines basades en la Teoria de la Informació que milloren els mètodes existents en l'àrea del processament d'imatges, en particular en els camps del registre i la segmentació d'imatges. Finalment es presenten dues aplicacions especialitzades per l'assessorament mèdic que han estat desenvolupades en el marc d'aquesta tesi.