926 resultados para Second harmonic generation (SHG)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel guest nonlinear optical (NLO) chromophore molecules (4-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were doped in poly (methyl methacrylate) (PMMA) host with a concentration of approximately 15% by weight. For a useful macroscopic electro-optic (EO) effect, these NLO molecules NAEC were arranged in a noncentrosymmetric structure in the host polymer by corona-onset poling at elevated temperature (COPET). For applying NAEC-PMMA polymer in optical devices such as EO switch, its optical properties have been investigated. The UV/Visible absorption spectra for the unpoled and poled polymer film were determined. The refractive index of the film was also determined from measurements of the coupling angles with the reflective intensity at 632.8 nm wavelength. Using the simple reflection technique, the EO coefficient 33 value was measured as 60 pm/V at 632.8 nm wavelength. The second-order nonlinear coefficient d(33) was characterized by the second-harmonic-generation (SHG) experimental setup and the calculated d(33) value reached 18.4 pm/V at 1064 nm wavelength. The relation between the second-order nonlinear coefficients d(33) and d(13) for the poled polymer film was also discussed in detail and the ratio d(33)/d(13) value was obtained as 3.3. (C) 2002 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Films of polyetherketone doped with the chromophores Disperse Red 1 (DR1) and Disperse Red 13 (DR13) were prepared by spin-coating method. By the in situ Second-harmonic Generation (SHG) signal intensity measurement, the optimal poling temperatures were obtained. For the investigated polyetherketone polymer doped with DR1 (DR1/PEK-c) and polyetherketone polymer doped with DR13 (DR13/PEK-c) films, the optimal poling temperatures were 150degreesC and 140degreesC, respectively. Under the optimal poling conditions, the high second-order nonlinear optical coefficient chi(33)((2)) = 11.02 pm/V has been obtained for the DR1/PEK-c; and for DR13/PEK-c at the same conditions the coefficient is 17.9 pm/V. The SHG signal intensity DR1/PEK-c could maintain more than 80% of its initial value when the temperature was under 100degreesC, and the SHG signal intensity of the DR13/PEK-c could maintain more than 80% of its initial value when the temperature was under 135degreesC. (C) 2002 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polyetherketone (PEK-c) guest-host polymer thin films doped with 3-(1,1-dicyanothenyl)-1-phenyl-4,5-dihydro-1H-pryazole (DCNP) were prepared. The polymer films were investigated with in situ second-harmonic generation (SHG) measurement. The corona poling temperature was optimized by the temperature dependence of the in situ SHG signal intensity under the poling electric field applying. The temporal and temperature stability of the second-order properties of the poled polymer film were measured by the in situ SHG signal intensity probing. The second-order NLO coefficient chi ((2))(33) = 32.65 pm/V at lambda = 1064 nm was determined by using the Makel fringe method after poling under the optimal poling condition. The dispersion of the NLO coefficient of the guest-host polymer system was determined by the measured value of chi ((2))(33) at 1064 nm and the two-level model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work considers the isomorphous optically active crystals NaClO3 and NaBrO3. The connection between their second-order nonlinear optical (NLO) responses and chemical bond structures is established, starting from the experimental optical activities. The calculation reproduces the well-known experimental fact that crystals of NaClO3 and NaBrO3 with similar structures have different signs of optical rotation and of second harmonic generation (SHG). Unlike previous bond charge models, the method may include more than one type of bond in the calculation, and therefore may be used to study the optical activity and nonlinear optical properties of more general crystals. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyacrylates containing para-nitro azobenzene have been synthesized by free radical polymerization. The influence of the length of the spacer of the homopolyacrylates (HPn, n=3,4,6), content of methyl acrylate in the copolyacrylates (CP6) with para-nitro azobenzene groups on the thermal properties, such as liquid crystallinity, Tg and Tm, was studied by DSC, WAXD and polarized optical microscopy. Among the polymers studied, only the homopolyacrylate (HP6)with six carbon atoms in the spacer exhibited a nematic phase. The second-harmonic generation (SHG) signal of the poled HP6 film was detected qualitatively by Maker-fringer method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We verify numerically and experimentally the accuracy of an analytical model used to derive the effective nonlinear susceptibilities of a varactor-loaded split ring resonator (VLSRR) magnetic medium. For the numerical validation, a nonlinear oscillator model for the effective magnetization of the metamaterial is applied in conjunction with Maxwell equations and the two sets of equations solved numerically in the time-domain. The computed second harmonic generation (SHG) from a slab of a nonlinear material is then compared with the analytical model. The computed SHG is in excellent agreement with that predicted by the analytical model, both in terms of magnitude and spectral characteristics. Moreover, experimental measurements of the power transmitted through a fabricated VLSRR metamaterial at several power levels are also in agreement with the model, illustrating that the effective medium techniques associated with metamaterials can accurately be transitioned to nonlinear systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gel aspiration-ejection (GAE) has recently been introduced as an effective technique for the rapid production of injectable dense collagen (IDC) gel scaffolds with tunable collagen fibrillar densities (CFDs) and microstructures. Herein, a GAE system was applied for the advanced production and delivery of IDC and IDC-Bioglass® (IDC-BG) hybrid gel scaffolds for potential bone tissue engineering applications. The efficacy of GAE in generating mineralizable IDC-BG gels (from an initial 75-25 collagen-BG ratio) produced through needle gauge numbers 8G (3.4 mm diameter and 6 wt% CFD) and 14G (1.6 mm diameter and 14 wt% CFD) was investigated. Second harmonic generation (SHG) imaging of as-made gels revealed an increase in collagen fibril alignment with needle gauge number. In vitro mineralization of IDC-BG gels was confirmed where carbonated hydroxyapatite was detected as early as day 1 in simulated body fluid, which progressively increased up to day 14. In vivo mineralization of, and host response to, acellular IDC and IDC-BG gel scaffolds were further investigated following subcutaneous injection in adult rats. Mineralization, neovascularization and cell infiltration into the scaffolds was enhanced by the addition of BG and at day 21 post injection, there was evidence of remodelling of granulation tissue into woven bone-like tissue in IDC-BG. SHG imaging of explanted scaffolds indicated collagen fibril remodelling through cell infiltration and mineralization over time. In sum, the results suggest that IDC-BG hybrid gels have osteoinductive properties and potentially offer a novel therapeutic approach for procedures requiring the injectable delivery of a malleable and dynamic bone graft that mineralizes under physiological conditions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and switchable polarization at room temperature. Here we study piezoelectricity and ferroelectricity in the smallest amino acid glycine, representing a broad class of non-centrosymmetric amino acids. Glycine is one of the basic and important elements in biology, as it serves as a building block for proteins. Three polymorphic forms with different physical properties are possible in glycine (α, β and γ), Of special interest for various applications are non-centrosymmetric polymorphs: β-glycine and γ-glycine. The most useful β-polymorph being ferroelectric took much less attention than the other due to its instability under ambient conditions. In this work, we could grow stable microcrystals of β-glycine by the evaporation of aqueous solution on a (111)Pt/Ti/SiO2/Si substrate as a template. The effects of the solution concentration and Pt-assisted nucleation on the crystal growth and phase evolution were characterized by X-ray diffraction analysis and Raman spectroscopy. In addition, spin-coating technique was used for the fabrication of highly aligned nano-islands of β-glycine with regular orientation of the crystallographic axes relative the underlying substrate (Pt). Further we study both as-grown and tip-induced domain structures and polarization switching in the β-glycine molecular systems by Piezoresponse Force Microscopy (PFM) and compare the results with molecular modeling and computer simulations. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of applied voltage and pulse duration. The domain shape is dictated by both internal and external polarization screening mediated by defects and topographic features. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that β-glycine is a uniaxial ferroelectric with the properties controlled by the charged domain walls which in turn can be manipulated by external bias. Besides, nonlinear optical properties of β-glycine were investigated by a second harmonic generation (SHG) method. SHG method confirmed that the 2-fold symmetry is preserved in as-grown crystals, thus reflecting the expected P21 symmetry of the β-phase. Spontaneous polarization direction is found to be parallel to the monoclinic [010] axis and directed along the crystal length. These data are confirmed by computational molecular modeling. Optical measurements revealed also relatively high values of the nonlinear optical susceptibility (50% greater than in the z-cut quartz). The potential of using stable β-glycine crystals in various applications are discussed in this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic nonlinear optical single crystals of Methyl para-Hydroxy Benzoate (MHB) have been grown using gel-solution technique. These crystals are cut along z-axis and are bombarded with Ag14+ ions of energy 100 MeV. The results show an increase in refractive index at the ion irradiated region. The dielectric constant of the irradiated crystal is increased more than 15 times compared to that of a nonirradiated crystal. The result of these changes and comparative study of second harmonic generation (SHG) efficiency before and after irradiation is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Für die Entwicklung photoschaltbarer selbstorganisierter Monoschichten (SAMs) auf Gold(111)-Oberflächen wurden neue Azobenzol-terminierte Asparagussäure - und Liponsäurederivate synthetisiert. Um den Einfluss lateraler Wasserstoffbrückenbindungen auf Qualität und Orientierungsordnung der Schichten zu untersuchen, wurden Monolagen, die durch amid- und esterverknüpfte Verbindungen gebildet wurden, miteinander verglichen. Die Filmbildung aus der Lösung wurde in situ durch optische Frequenzverdopplung (SHG) untersucht und die Photoreaktivität mittels Kontaktwinkelmessungen, Oberflächen-Plasmonenresonanz (SPR) und Ellipsometrie verfolgt. SAMs auf Gold wurden außerdem mit Hilfe von Röntgenphotoelektronenspektroskopie (XPS), Nahkanten-Reflexions-Röntgenabsorptionsspektroskopie (NEXAFS) und Infrarot-Reflexionsabsorptionsspektroskopie (IRRAS) charakterisiert, um die Filmqualität, die Bindung ans Substrat und Orientierungsordnung im Film zu ermitteln. Da die Chemisorption auf polykristallinem Gold formal der Koordinationschemie von 1,2-Dithiolan-Derivaten gegenüber nullwertigen Edelmetall-Zentralatomen entspricht, wurden etliche Pt-Komplexe durch oxidative Addition an [Pt(PPh3)4] dargestellt. Im Zusammenhang mit der Darstellung der Asparagussäure wurde die Kristallstruktur von [pipH]2[WS4] und der neuen Verbindungen [pipH]3[WS4](HS) und [pipH]4[WS4][WOS3] (pip = Piperidin) bestimmt. Wasserstoffbrückenbindungen zwischen den Piperidinium-Kationen und den Thiowolframat-Anionen spielen eine dominante strukturelle Rolle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im Vordergrund dieser Arbeit stehen die Synthesen des Azobenzol-4-trichlorsilans sowie des Bis(4-azobenzol)disulfids, ausgehend von einfachen und kommerziell erhältlichen Verbindungen. Moleküle, aus denen sich diese Verbindungen synthetisieren lassen, sind die Iodderivate des Azobenzols, welche über die Kondensation von Benzolaminen (Anilinen) und Nitrosobenzolen dargestellt wurden, aber auch über die altbewährte Azokupplung. Insgesamt wurden 19 neue Azobenzolderivate, das neue [(4-Aminophenyl)ethinyl]ferrocen und das neue Bis[4-(4'-bromazobenzol)]disulfid synthetisiert und charakterisiert. Außerdem wurden 13 neue Kristallstrukturen erzeugt. Mit den synthetisierten Molekülen wurden Substrat-Adsorbat-Systeme gebildet. Als Substrate wurden oberflächenoxidiertes Silizium und Gold gewählt. Die Präparation dieser sogennanten selbstorganisierten Monolagen (SAMs) bzw. der kovalent gebundenen Monolagen im Falle der Trichlorsilylderivate (CAMs) wurde eingehend studiert. Das Azobenzol wurde als photoschaltbare Einheit gewählt, da es bereits Kern zahlreicher Untersuchungen war und als solcher als guter und zuverlässiger Baustein für reversible photoschaltbare Systeme etabliert ist. Zur Charakterisierung Schichten und zur Untersuchung ihres photoresponsiven Verhaltens sowie sowie zur Untersuchung der Schichtbildung selbst wurden mehrere physikalische Messmethoden angewandt. Die Schichtbildung wurde mit SHG (optische Frequenzverdopplung) verfolgt, die fertigen Schichten wurden mit XPS (Röntgen-Photonen-Spektroskopie) und NEXAFS (Nahkanten-Röntgen-Absorptions-Feinstruktur) untersucht, um Orientierung und Ordnung der Moleküle in der Schicht zu ermitteln. Das Schaltverhalten wurde mit Ellipsometrie und durch Messungen des Wasserkontaktwinkels beobachtet. Durch Variation der Endgruppe des Azobenzols ist es möglich, die Oberflächeneigenschaften einstellen gezielt zu können, wie Hydrophobie, Hydrophilie, Komplexierungsverhalten oder elektrische Schaltbarkeit. Dies gelingt durch Gruppen wie N,N-Dimethylamino-, Methoxy-, Ethoxy-, Octyloxy-, Dodecyloxy-, Benzyloxy-, Methyl-, Trifluormethyl-, Pyridyl-, Phenylethinyl- und Ferrocenyl-Restgruppen, um nur eine Auswahl zu nennen. Einerseits wurde Silizium als Substrat gewählt, da es wegen seiner Verwendung in der Halbleiterindustrie ein nicht uninteressantes Substrat darstell und die Möglichkeiten der kovalenten Anbindung von Trichlorsilanen aber auch Trialkoxysilanen auch gut untersucht ist. Andererseits wurden auch Untersuchungen mit Gold als Substrat angestellt, bei dem Thiole und Disulfide die bevorzugten Ankergruppen bilden. Während sich auf Gold sogenannte SAMs bilden, verleiht die kovalente Siloxanbindung den CAMs auf Silizium eine besondere Stabilität.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ordered nano-structured surfaces, like self-assembled monolayers (SAMs) are of a great scientific interest, due to the low cost, simplicity, and versatility of this method. SAMs found numerous of applications in molecular electronics, biochemistry and optical devices. Phthalocyanine (Pc) complexes are of particular interest for the SAM preparation. These molecules exhibit fascinating physical properties and are chemically and thermally stable. Moreover their complex structure is advantageous for the fabrication of switchable surfaces. In this work the adsorption process of Pcs derivatives, namely, subphthalocyanines (SubPcB) and terbium (2TbPc) sandwich complexes on gold has been investigated. The influence of the molecular concentration, chain length of peripheral groups, and temperature on the film formation process has been examined using a number of techniques. The SAMs formation process has been followed in situ and in real time by means of second harmonic generation (SHG) and surface plasmon resonance (SPR) spectroscopy. To investigate the quality of the SAMs prepared at different temperatures atomic force microscopy (AFM) and X-Ray photoelectron spectroscopy (XPS)measurements were performed. Valuable information about SubPcB and 2TbPc adsorbtion process has been obtained in the frame of this work. The kinetic data, obtained with SHG and SPR, shows the best conformance with the first order Langmuir kinetic model. Comparing SHG and SPR results, it has been found, that the film formation occurs faster than the formation of chemical bonds. Such, the maximum amount of molecules on the surface is reached after 6 min for SubPcB and 30 min for 2TbPc. However, at this time the amount of formed chemicals bonds is only 10% and 40% for SubPcB and 2TbPc, respectively. The most intriguing result, among others, was obtained at T = 2 °C, where the formation of the less dense SAMs have been detected with SHG.However, analyzing XPS and AFM data, it has been revealed, that there is the same amount of molecules on the surface at both temperature T = 2 °C, and T = 21 °C, but the amount of formed chemicals bond is different. At T = 2 °C molecules form aggregates, therefore many of available anchor groups stay unattached.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis explores the potential of chiral plasmonic nanostructures for the ultrasensitive detection of protein structure. These nanostructures support the generation of fields with enhanced chirality relative to circularly polarised light and are an extremely incisive probe of protein structure. In chapter 4 we introduce a nanopatterned Au film (Templated Plasmonic Substrate, TPS) fabricated using a high through-put injection moulding technique which is a viable alternative to expensive lithographically fabricated nanostructures. The optical and chiroptical properties of TPS nanostructures are found to be highly dependent on the coupling between the electric and magnetic modes of the constituent solid and inverse structures. Significantly, refractive index based measurements of strongly coupled TPSs display a similar sensitivity to protein structure as previous lithographic nanostructures. We subsequently endeavour to improve the sensing properties of TPS nanostructures by developing a high through-put nanoscale chemical functionalisation technique. This process involves a chemical protection/deprotection strategy. The protection step generates a self-assembled monolayer (SAM) of a thermally responsive polymer on the TPS surface which inhibits protein binding. The deprotection step exploits the presence of nanolocalised thermal gradients in the water surrounding the TPS upon irradiation with an 8ns pulsed laser to modify the SAM conformation on surfaces with high net chirality. This allows binding of biomaterial in these regions and subsequently enhances the TPS sensitivity levels. In chapter 6 an alternative method for the detection of protein structure using TPS nanostructures is introduced. This technique relies on mediation of the electric/magnetic coupling in the TPS by the adsorbed protein. This phenomenon is probed through both linear reflectance and nonlinear second harmonic generation (SHG) measurements. Detection of protein structure using this method does not require the presence of fields of enhanced chirality whilst it is also sensitive to a larger array of secondary structure motifs than the measurements in chapters 4 and 5. Finally, a preliminary investigation into the detection of mesoscale biological structure is presented. Sensitivity to the mesoscale helical pitch of insulin amyloid fibrils is displayed through the asymmetry in the circular dichroism (CD) of lithographic gammadions of varying thickness upon adsorption of insulin amyloid fibril spherulites and fragmented fibrils. The proposed model for this sensitivity to the helical pitch relies on the vertical height of the nanostructures relative to this structural property as well as the binding orientation of the fibrils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of resonant generation of the second harmonic of the surface wave, propagating along the external magnetic field at the plasma-metal boundary is considered. The periodic process of the energy exchange between the first and the second harmonics of the wave is investigated as well. It is shown that the process under study is periodic one. The analytical expressions are obtained and numerical estimations are presented for characteristic time of nonlinear energy exchange. The self-action effect of main frequency wave is account for harmonics interaction. It is shown that the effect leads to nonlinear phenomena attenuation, which expresses in narrowing possible value interval of harmonics amplitudes during energy exchange process and in increasing the nonlinear interaction time.