931 resultados para Sea control
Resumo:
In a “wasp-waist” ecosystem, an intermediate trophic level is expected to control the abundance of predators through a bottom-up interaction and the abundance of prey through a top-down interaction. Previous studies suggest that the North Sea is mainly governed by bottom-up interactions driven by climate perturbations. However, few studies have investigated the importance of the intermediate trophic level occupied by small pelagic fishes.
Resumo:
Removal of large predatory fishes from marine ecosystems has resulted in persistent ecosystem shifts, with collapsed predator populations and super-abundant prey populations. One explanation for these shifts is reversals of predator–prey roles that generate internal feedbacks in the ecosystems. Pelagic forage fish are often predators and competitors to the young life stages of their larger fish predators. I show that cod recruitment in the North Sea has been negatively related to the spawning-stock biomass of herring for the last 44 years. Herring, together with the abundance of Calanus finmarchicus, the major food for cod larvae, were the main predictors of cod recruitment. These predictors were of equivalent importance, worked additively, and explained different parts of the dynamics in cod recruitment. I suggest that intensive harvesting of cod has released herring from predator control, and that a large population of herring suppresses cod recruitment through predation on eggs and larvae. This feedback mechanism can promote alternative stable states and therefore cause hysteresis to occur under changing conditions; however, harvesting of herring might at present prevent a shift in the ecosystem to a herring-dominated state.
Resumo:
Traditionally, marine ecosystem structure was thought to be bottom-up controlled. In recent years, a number of studies have highlighted the importance of top-down regulation. Evidence is accumulating that the type of trophic forcing varies temporally and spatially, and an integrated view – considering the interplay of both types of control – is emerging. Correlations between time series spanning several decades of the abundances of adjacent trophic levels are conventionally used to assess the type of control: bottom-up if positive or top-down if this is negative. This approach implies averaging periods which might show time-varying dynamics and therefore can hide part of this temporal variability. Using spatially referenced plankton information extracted from the Continuous Plankton Recorder, this study addresses the potential dynamic character of the trophic structure at the planktonic level in the North Sea by assessing its variation over both temporal and spatial scales. Our results show that until the early-1970s a bottom-up control characterized the base of the food web across the whole North Sea, with diatoms having a positive and homogeneous effect on zooplankton filter-feeders. Afterwards, different regional trophic dynamics were observed, in particular a negative relationship between total phytoplankton and zooplankton was detected off the west coast of Norway and the Skagerrak as opposed to a positive one in the southern reaches. Our results suggest that after the early 1970s diatoms remained the main food source for zooplankton filter-feeders east of Orkney–Shetland and off Scotland, while in the east, from the Norwegian Trench to the German Bight, filter-feeders were mainly sustained by dinoflagellates.
Resumo:
The patterns of copepod species richness (S) and their relationship with phytoplankton productivity, temperature and environmental stability were investigated at climatological, seasonal and year-to-year time scales as well as scales along latitudinal and oceanic–neritic gradients using monthly time series of the Continuous Plankton Recorder (CPR) Survey collected in the North East Atlantic between 1958 and 2006. Time series analyses confirmed previously described geographic patterns. Equatorward and towards neritic environments, the climatological average of S increases and the variance explained by the seasonal cycle decreases. The bi-modal character of seasonality increases equatorward and the timing of the seasonal cycle takes place progressive earlier equatorward and towards neritic environments. In the long-term, the climatological average of S decreased significantly (p < 0.001) between 1958 and 2006 in the Bay of Biscay and North Iberian shelf at a rate of ca. 0.04 year−1, and increased at the same rate between 1991 and 2006 in the northernmost oceanic location. The climatological averages of S correlate positively with those of the index of seasonality of phytoplankton productivity (ratio between the minimum and maximum monthly values of surface chlorophyll) and sea surface temperature, and negatively with those of the proxy for environmental stability (monthly frequency of occurrence of daily averaged wind speed exceeding 10 m s−1). The seasonal cycles of S and phytoplankton productivity (surface chlorophyll as proxy) exhibit similar features in terms of shape, timing and explained variance, but the relationship between the climatological averages of both variables is non-significant. From year-to-year, the annual averages of S correlate negatively with those of phytoplankton productivity and positively with those of sea surface temperature along the latitudinal gradient, and negatively with those of environmental stability along the oceanic–neritic gradient. The annual anomalies of S (i.e. factoring out geographic variation) show a unimodal relationship with those of sea surface temperature and environmental stability, with S peaking at intermediate values of the anomalies of these variables. The results evidence the role of seasonality of phytoplankton productivity on the control of copepod species richness at seasonal and climatological scales, giving support to the species richness–productivity hypothesis. Although sea surface temperature (SST) is indeed a good predictor of richness along the latitudinal gradient, it is unable to predict the increase of richness form oceanic to neritic environments, thus lessening the generality of the species richness–energy hypothesis. Meteo-hydrographic disturbances (i.e. SST and wind speed anomalies as proxies), presumably through its role on mixed layer depth dynamics and turbulence and hence productivity, maximise local diversity when occurring at intermediate frequency and or intensity, thus providing support to the intermediate disturbance hypothesis on the control of copepod diversity.
Resumo:
A three dimensional hydrodynamic model with a coupled carbonate speciation sub-model is used to simulate large additions of CO2into the North Sea, representing leakages at potential carbon sequestration sites. A range of leakage scenarios are conducted at two distinct release sites, allowing an analysis of the seasonal, inter-annual and spatial variability of impacts to the marine ecosystem. Seasonally stratified regions are shown to be more vulnerable to CO2release during the summer as the added CO2remains trapped beneath the thermocline, preventing outgasing to the atmosphere. On average, CO2 injected into the northern North Sea is shown to reside within the water column twice as long as an equivalent addition in the southern North Sea before reaching the atmosphere. Short-term leakages of 5000 tonnes CO2over a single day result in substantial acidification at the release sites (up to -1.92 pH units), with significant perturbations (greater than 0.1 pH units) generally confined to a 10 km radius. Long-term CO2leakages sustained for a year may result in extensive plumes of acidified seawater, carried by major advective pathways. Whilst such scenarios could be harmful to marine biota over confined spatial scales, continued unmitigated CO2emissions from fossil fuels are predicted to result in greater and more long-lived perturbations to the carbonate system over the next few decades.
Resumo:
The effects of ocean acidification on nitrogen (N2) fixation rates and on the community composition of N2-fixing microbes (diazotrophs) were examined in coastal waters of the North-Western Mediterranean Sea. Nine experimental mesocosm enclosures of ∼50 m3 each were deployed for 20 days during June-July 2012 in the Bay of Calvi, Corsica, France. Three control mesocosms were maintained under ambient conditions of carbonate chemistry. The remainder were manipulated with CO2 saturated seawater to attain target amendments of pCO2 of 550, 650, 750, 850, 1000 and 1250 μatm. Rates of N2 fixation were elevated up to 10 times relative to control rates (2.00 ± 1.21 nmol L-1d-1) when pCO2 concentrations were >1000 μatm and pHT (total scale) < 7.74. Diazotrophic phylotypes commonly found in oligotrophic marine waters, including the Mediterranean, were not present at the onset of the experiment and therefore, the diazotroph community composition was characterised by amplifying partial nifH genes from the mesocosms. The diazotroph community was comprised primarily of cluster III nifH sequences (which include possible anaerobes), and proteobacterial (α and γ) sequences, in addition to small numbers of filamentous (or pseudo-filamentous) cyanobacterial phylotypes. The implication from this study is that there is some potential for elevated N2 fixation rates in the coastal western Mediterranean before the end of this century as a result of increasing ocean acidification. Observations made of variability in the diazotroph community composition could not be correlated with changes in carbon chemistry, which highlights the complexity of the relationship between ocean acidification and these keystone organisms.
Resumo:
Measures of prevention and control against polycyclic aromatic hydrocarbons (PAHs) focus on an official food control, a code of best practice to reduce PAHs levels by controlling industry and in the development of a chemopreventive strategy. Regulation (EU) 835/2011 establishes maximum levels of PAHs for each food group. In addition, Regulations (EU) 333/2007 and 836/2011 set up the methods of sampling and analysis for its official control. Scientific studies prove that the chemopreventive strategy is effective against these genotoxic compounds effects. Most chemopreventive compounds studied with proven protective effects against PAHs are found in fruit and vegetables.
Resumo:
The conflict’s coverage, since its inception, has been closely linked to the relationship that both the military and the media have. The freedom they maintained during their first conflicts, although not without problems, though they suffered strict censorship suffered during World War I, and lastly the straitjacket treatment that they have endured during recent wars. The Vietnam War marked a turning point in this relationship, and after the invasion of Grenada, the military would launch new information guidelines, called Department of Defense National Media Pool. The lack of clear guidance of both control and space, has made for a complicated relationship between media and military, so the rules have evolved after every conflict shaping the future of press coverage and thus, war reporting.
Resumo:
Students' learning process can be negatively affected when their reading and comprehension control is not appropriated. This research focuses on the analysis of how a group of students from high school evaluate their reading comprehension in manipulated scientific texts. An analysis tool was designed to determine the students' degree of comprehension control when reading a scientific short text with an added contradiction. The results have revealed that the students from 1st and 3rd ESO do not properly self-evaluated their reading comprehension. A different behavior has been observed in 1st Bachillerato, where appropriate evaluation and regulation seem to be more frequent. Moreover, no significant differences have been found regarding the type of text, year or gender. Finally, as identified by previous research, the correlations between the students' comprehension control and their school marks have shown to have a weak relationship and inversely proportional to the students' age.
Resumo:
Survival, growth, above ground biomass accumulation, soil surface elevation dynamics and nitrogen accumulation in accreted sediments were studied in experimental treatments planted with four different densities (6.96, 3.26, 1.93 and 0.95 seedlings m-2) of the mangrove Rhizophora mucronata in Puttalam Lagoon, Sri Lanka. Measurements were taken over a period of 1171 days and were compared with those from unplanted controls. Trees at the lowest density showed significantly reduced survival, whilst measures of individual tree growth did not differ significantly among treatments. Rates of surface sediment accretion (means ± S.E.) were 13.0 (±1.3), 10.5 (±0.9), 8.4 (±0.3), 6.9 (±0.5) and 5.7 (±0.3) mm yr-1 at planting densities of 6.96, 3.26, 1.93, 0.95, and 0 (unplanted control) seedlings m-2, respectively, showing highly significant differences among treatments. Mean (± S.E.) rates of surface elevation change were much lower than rates of accretion at 2.8 (±0.2), 1.6 (±0.1), 1.1 (±0.2), 0.6 (±0.2) and -0.3 (±0.1) mm yr-1 for 6.96, 3.26, 1.93, 0.95, and 0 seedlings m-2, respectively. All planted treatments appeared to accumulate greater nitrogen concentrations in the sediment compared to the unplanted control, and suggests one potential causal mechanism for the facilitatory effects observed; high densities of plants potentially contribute to the accretion of greater amounts of nutrient rich sediment. While this potential process needs further study, this study demonstrated how higher densities of mangroves enhance rates of sediment accretion and surface elevation, processes that may be crucial in mangrove ecosystem adaptation to sea level rise. There was no evidence that increasing plant density evoked a trade-off with growth and survival of the planted trees. Rather facilitatory effects enhanced survival at high densities, suggesting that local land managers may be able to take advantage of plantation densities to help mitigate sea-level rise effects by encouraging positive soil surface elevation increment, and perhaps even greater nutrient retention to promote mangrove growth and ameliorate nearshore eutrophication in tropical island environments.
Resumo:
Farming of salmon has become a significant industry in many countries over the past two decades. A major challenge facing this sector is infestation of the salmon by sea lice. The main way of treating salmon for such infestations is the use of medicines such as organophosphates, pyrethrins, hydrogen peroxide or benzoylphenyl ureas. The use of these medicines in fish farms is, however, highly regulated due to concerns about contamination of the wider marine environment. In this paper we report the use of photochemically active biocides for the treatment of a marine copepod, which is a model of parasitic sea lice. Photochemical activation and subsequent photodegradation of PDAs may represent a controllable and environmentally benign option for control of these parasites or other pest organisms in aquaculture.
Resumo:
Dissertação mest., Aquacultura e Pescas, Universidade do Algarve, 2006
Resumo:
Tese de Doutoramento, Ecologia, Especialidade de Ecofisiologia, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2007
Resumo:
The migration of the hypophysiotropic GnRH (GnRH-I) neurons during early development is a crucial step in establishing a normally functioning reproductive system in all vertebrates. These neurons derive from progenitor cells in the olfactory placode and subsequently migrate to their final position in the ventral forebrain, where they mediate hypophysiotropic control over Lh. We use zebrafish as a model to investigate the path and the factors that mediate the migration of the GnRH-I neurons during early development. A transgenic line of zebrafish, in which GnRH- I neurons specifically express a reporter gene (GFP) has been developed in our lab. This was achieved by integrating a GnRH-I promoter/GFP reporter transgene into the zebrafish genome. The resulting transgenic line allows us to track the route of the GnRH-I neuronal migration in real time and in vivo. We have used this line to conduct time lapse imaging to ascertain the exact migrational path and the final position in the ventral forebrain of the GnRH-I neurons.