788 resultados para Science teachers
Resumo:
The four-skills on tests for young native speakers commonly do not generate correlation incongruency concerning the cognitive strategies frequently reported. Considering the non-native speakers there are parse evidence to determine which tasks are important to assess properly the cognitive and academic language proficiency (Cummins, 1980; 2012). Research questions: It is of high probability that young students with origin in immigration significantly differ on their communication strategies and skills in a second language processing context (1); attached to this first assumption, it is supposed that teachers significantly differ depending on their scientific area and previous training (2). Purpose: This study intends to examine whether school teachers (K-12) as having different origin in scientific domain of teaching and training perceive differently an adapted four-skills scale, in European Portuguese. Research methods: 77 teachers of five areas scientific areas, mean of teaching year service = 32 (SD= 2,7), 57 males and 46 females (from basic and high school levels). Main findings: ANOVA (Effect size and Post-hoc Tukey tests) and linear regression analysis (stepwise method) revealed statistically significant differences among teachers of different areas, mainly between language teachers and science teachers. Language teachers perceive more accurately tasks in a multiple manner to the broad skills that require to be measured in non-native students. Conclusion: If teachers perceive differently the importance of the big-four tasks, there would be incongruence on skills measurement that teachers select for immigrant puppils. Non-balanced tasks and the teachers’ perceptions on evaluation and toward competence of students would likely determine limitations for academic and cognitive development of non-native students. Furthermore, results showed sufficient evidence to conclude that tasks are perceived differently by teachers toward importance of specific skills subareas. Reading skills are best considered compared to oral comphreension skills in non-native students.
Resumo:
Research on teacher identities is both important and increasing. In this forum contribution I re-interpret assertions about an African American science teacher’s identities in terms of Jonathon Turner’s (2002) constructs of role identity and sub-identity. I contest the notion of renegotiation of identities, suggesting that particular role identities can be brought to the foreground and then backgrounded depending on the situation and the need to confirm a sub-identity. Finally, I recommend the inclusion of teachers’ voices in identity research through greater use of co-authoring roles for teachers.
Resumo:
Nationally and internationally, context-based programs have been implemented in an attempt to engage students in chemistry through connecting the canonical science with the real-world. In Queensland, a context-based approach to chemistry was trialled in selected schools from 2002 but there is little research that investigates how students learn in a context-based setting. This paper presents one significant finding from an ethnographic study that explored the learning that occurred in an 11th grade context-based chemistry classroom in Queensland. The study found that by providing students with the opportunity to write, fluid transitions (or to-ing and fro-ing) between concepts and context were an outcome of context-based learning.
Resumo:
The Space Day has been running at QUT for about a decade. The Space Day started out as a single lecture on the stars delivered to a group of high school students from Brisbane State High School (BSHS), just across the river from QUT and therefore convenient for the school to visit. I was contacted by Victor James of St. Laurence’s College (SLC), Brisbane asking if he could bring a group of boys to QUT for a lecture similar to that delivered to BSHS. However, for SLC a hands-on laboratory session was added to the lecture and thus the Space Day was born. For the Space Day we have concentrated on year 7 – 10 students. Subsequently, many other schools from Brisbane and further afield in Queensland have attended a Space Day.
Resumo:
This paper presents the findings of a small pilot study conducted with a group of final year pre-service teachers studying a secondary social science curriculum method unit in an Australian university. One of the study’s research objectives aimed at identifying how students responded to efforts to embed intercultural understanding through Studies of Asia in their final curriculum method unit. The unit was designed and taught by the researcher on the assumption that beginning social science teachers need to be empowered with pedagogical skills and new dispositions to deal with value laden emerging regional and global concerns in their Australian secondary school classrooms. This pilot study’s research methodology was located within the qualitative framework of a participatory action research model whereby the lecturer who designed, coordinated and taught the unit was also the researcher. Its scope was limited to one semester with volunteer students. The pilot study sought to investigate responses to several issues, and this paper reports on pre-service teacher reflections on the content, pedagogy and learning they experienced in their weekly sessions with specific reference to cultural understanding, Studies of Asia and the development of Asia literacy. It also reports on pre-service teacher reflections about their own evolving capacity as beginning teachers. The findings indicate that pre-service teachers valued the opportunity to engage with learning experiences which enhanced their conceptual understandings about culture whilst also extending their pedagogical and content knowledge.
Resumo:
This chapter aims to situate values education as a core component of social science pre-service teacher education. In particular, it reflects on an experiment in embedding a values laden Global Education perspective in a fourth year social science curriculum method unit. This unit was designed and taught by the researcher on the assumption that beginning social science teachers need to be empowered with pedagogical skills and new dispositions to deal with value laden emerging global and regional concerns in their secondary school classrooms. Moreover, it was assumed that when pre-service teachers engage in dynamic and interactive learning experiences in their curriculum unit, they commence the process of ‘capacity building’ those skills which prepare them for their own lifelong professional learning. This approach to values education also aimed at providing pre-service teachers with opportunities to ‘create deep understandings of teaching and learning’ (Barnes, 1989, p. 17) by reflecting on the ways in which ‘pedagogy can be transformative’ (Lovat and Toomey, 2011 add page no from Chapter One). It was assumed that this tertiary experience would foster the sine qua non of teaching – a commitment to students and their learning. Central to fostering new ‘dispositions’ through this approach, was the belief in the power of pedagogy to make the difference in enhancing student participation and learning. In this sense, this experiment in values education in secondary social science pre-service teacher education aligns with the Troika metaphor for a paradigm change, articulated by Lovat and Toomey (2009) in Chapter One.
Resumo:
It is difficult to get school and university students interested in physics. Many students place physics in the ‘too hard basket’. In many cases this is because physics is perceived to contain a lot of mathematics, which many students also find hard. Another barrier to the study of physics is that there is no easily identifiable career as a physicist, as for example there is for a chemist, engineer, nurse, lawyer, doctor, dentist etc. Physics touches many aspects of life. All electronic equipment, phones, computers etc contain semiconductor chips that were developed by physicists. A result of this very diverse application of physics is that physicist end up working all over the place. For example, physicists end up in private and government research laboratories, as teachers in schools and as medical physicists in hospitals.
Resumo:
A quantitative, quasi-experimental study of the effectiveness of computer-based scientific visualizations for concept learning on the part of Year 11 physics students (n=80) was conducted in six Queensland high school classrooms. Students’ gender and academic ability were also considered as factors in relation to the effectiveness of teaching with visualizations. Learning with visualizations was found to be equally effective as learning without them for all students, with no statistically significant difference in outcomes being observed for the group as a whole or on the academic ability dimension. Male students were found to learn significantly better with visualizations than without, while no such effect was observed for female students. This may give rise to some concern for the equity issues raised by introducing visualizations. Given that other research shows that students enjoy learning with visualizations and that their engagement with learning is enhanced, the finding that the learning outcomes are the same as for teaching without visualizations supports teachers’ use of visualizations.
Resumo:
Targeting students’ learning is at the centre of education. In addition, education is promoted as a solution on various issues; consequently educators seek ways for teachers to address societal needs, students’ learning needs, and the overcrowded curriculum. There are definition debates and issues around integrating curricula. However, the rationale for primary students undertaking curricula integrated learning can provide motivation for primary teachers to devise and implement curricula integrated lessons in the classroom. More exploration is required to present models for the practical implementation of curricula integration. This paper provides practical ideas for curricula integration that focus on combining achievement standards from the Australian Curriculum: Science and other key learning areas.
Resumo:
One way to integrate indigenous perspectives in junior science is through links between indigenous stories of the local area and science concepts. Using local indigenous stories about landforms, a teacher of year 8 students designed a unit on geology that catered for the diverse student population in his class. This paper reports on the inquiry-based approach structured around the requirements of the Australian Curriculum highlighting the learning and engagement of students during the unit.
Resumo:
This paper is a response to Hoban and Neilsen's (2010) Five Rs model for understanding how learners engage with slowmation. An alternative model (the Learning MMAEPER Model) that builds on the 5Rs model is explained in terms of its use in secondary science preservice teacher education. To probe into the surface and deep learning that can occur during the creation of a slowmation, the learning and relearning model is explored in terms of learning elements. This model can assist teachers to monitor the learning of their students and direct them to a deeper understanding of science concepts.
Resumo:
This paper is an exploration of conceptual change. It reports on a study which utilised Hewson and Lemberger’s (2000) Conceptual Status Elements, and explores the unique contribution of Slowmation Animation in the conceptual learning of pre-service science teachers. 15 short animations were created by 55 participants in a single two hour tutorial class as a part of their methods training. Conceptual change was found to occur when their animation topic challenged their understandings of the processes within the scientific concept. The pre-service science teachers reported an enthusiasm for Slowmation Animation as a method for learning how to learn, as well as for highlighting what they thought they knew, but didn’t really know.
Resumo:
Five Canadian high school Chemistry classes in one school, taught by three different teachers, studied the concepts of dynamic chemical equilibria and Le Chatelier’s Principle. Some students received traditional teacher-led explanations of the concept first and used an interactive scientific visualisation second, while others worked with the visualisation first and received the teacher-led explanation second. Students completed a test of their conceptual understanding of the relevant concepts prior to instruction, after the first instructional session and at the end of instruction. Data on students’ academic achievement (highest, middle or lowest third of the class on the mid-term exam) and gender were also collected to explore the relationship between these factors, conceptual development and instructional sequencing. Results show, within this context at least, that teaching sequence is not important in terms of students’ conceptual learning gains.
Resumo:
In many countries there is a shortage of quality teachers in areas of science, technology, engineering and mathematics (STEM). Additional to the low levels of recruitment is an extraordinary high attrition rate with some 50% of beginning teachers leaving the profession within five years. One solution implemented in several countries has been to encourage mid-career professionals in the area of STEM to become school teachers. These professionals are said to bring to teaching enthusiasm, knowledge and a passion for their subject which will impact engagement and learning by students. However, these career-changers have constructed professional identities and are accustomed to working within a culture of collaboration and inquiry. In contrast, school cultures are quite different and often teaching is a lonely solitary affair with little opportunity for collegial relationships aimed at knowledge building in the context of teaching. Crossing from a culture of STEM to a culture of schools and teaching can be challenging. This study was conducted with 13 teachers who were followed for three years. However, this paper reports on the experiences of one teacher with an engineering background crossing the boundaries from practising STEM to Teaching STEM.