986 resultados para Scalar field theory
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the two-alpha-particle (alpha alpha) system in an Effective Field Theory (EFT) for halo-like systems. We propose a power Counting that incorporates the subtle interplay of strong and electromagnetic forces leading to a narrow resonance at an energy of about 0.1 MeV. We investigate the EFT expansion in detail, and compare its results with existing low-energy aa phase shifts and previously determined effective-range parameters. Good description of the data is obtained with a surprising amount of fine-tuning. This scenario can be viewed as an expansion around the limit where, when electromagnetic interactions are turned off, the (8)Be ground state is at threshold and exhibits conformal invariance. We also discuss possible extensions to systems with more than two alpha particles. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1/N(c) expansion in QCD (with N(c) the number of colors) suggests using a potential from meson sector (e.g., Richardson) for baryons. For light quarks a sigma-field has to be introduced to ensure chiral symmetry breaking (chi-SB). It is found that nuclear matter properties can be used to pin down the chi-SB modeling. All masses, M(N), m-sigma, m-omega, are found to scale with density. The equations are solved self-consistently.
Resumo:
The free action for massless Ramond-Ramond fields is derived from closed superstring field theory using the techniques of Siegel and Zwiebach. For the uncompactified Type IIB superstring, this gives a manifestly Lorentz-covariant action for a self-dual five-form field strength. Upon compactification to four dimensions, the action depends on a U(1) field strength from 4D N = 2 supergravity. However, unlike the standard Maxwell action, this action is manifestly invariant under the electromagnetic duality transformation which rotates F-mn into epsilon(mnpq)F(pq).
Resumo:
The recipe used to compute the symmetric energy-momentum tensor in the framework of ordinary field theory bears little resemblance to that used in the context of general relativity, if any. We show that if one stal ts fi om the field equations instead of the Lagrangian density, one obtains a unified algorithm for computing the symmetric energy-momentum tensor in the sense that it can be used for both usual field theory and general relativity.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present a higher derivative gauge theory in (2 + 1) dimensions which can have its parameters suitably tuned in order to become a consistent quantum field theory, in the sense that both tachyons and ghosts are absent from the particle spectrum of the theory.
Resumo:
We analyze the presence of a scalar field around a spherically symmetric distribution of an ordinary matter, obtaining an exact solution for a given scalar field distribution.
Resumo:
We give a gauge and manifestly SO(2,2) covariant formulation of the field theory of the self-dual string. The string fields are gauge connections that turn the super-Virasoro generators into covariant derivatives, © 1997 Elsevier Science B.V.
Resumo:
A comparative study between the metric and the teleparallel descriptions of gravitation is made for the case of a scalar field. In contrast to the current belief that only spin matter could detect the teleparallel geometry, scalar matter being able to feel the metric geometry only, we show that a scalar field is able not only to feel anyone of these geometries, but also to produce torsion. Furthermore, both descriptions are found to be completely equivalent, which means that in fact, besides coupling to curvature, a scalar field couples also to torsion.
Resumo:
We review a formalism of superstring quantization with manifest six-dimensional spacetime supersymmetry, and apply it to AdS3 × S3 backgrounds with Ramond-Ramond flux. The resulting description is a conformal field theory based on a sigma model whose target space is a certain supergroup SU′(2|2).
Resumo:
We study a field theory formulation of a fluid mechanical model. We implement the Hamiltonian formalism by using the BFFT conjecture in order to build a gauge invariant fluid field theory. We also generalize previous known classical dynamical field solutions for the fluid model. ©2000 The American Physical Society.
Resumo:
We quantize the low-energy sector of a massless scalar field in Reissner-Nordström spacetime. This allows the analysis of processes involving soft scalar particles occurring outside charged black holes. In particular, we compute the response of a static scalar source interacting with Hawking radiation using the Unruh (and the Hartle-Hawking) vacuum. This response is compared with the one obtained when the source is uniformly accelerated in the usual vacuum of Minkowski spacetime with the same proper acceleration. We show that both responses are in general different in opposition to the result obtained when the Reissner-Nordström black hole is replaced by a Schwarzschild one. The conceptual relevance of this result is commented on. ©2000 The American Physical Society.
Resumo:
It has been conjectured that at the stationary point of the tachyon potential for the D-brane-anti-D-brane pair or for the non-BPS D-brane of superstring theories, the negative energy density cancels the brane tensions. We study this conjecture using a Wess-Zumino-Witten-like open superstring field theory free of contact term divergences and recently shown to give 60% of the vacuum energy by condensation of the tachyon field alone. While the action is non-polynomial, the multiscalar tachyon potential to any fixed level involves only a finite number of interactions. We compute this potential to level three, obtaining 85% of the expected vacuum energy, a result consistent with convergence that can also be viewed as a successful test of the string field theory. The resulting effective tachyon potential is bounded below and has two degenerate global minima. We calculate the energy density of the kink solution interpolating between these minima finding good agreement with the tension of the D-brane of one lower dimension. © 2000 Elsevier Science B.V.