980 resultados para SURFACE CONTAMINATION
Resumo:
Reactive oxygen species and nitrogen species have been implicated in the pathogenesis of coal dust-induced toxicity. The present study investigated several oxidative stress biomarkers (Contents of lipoperoxidation = TBARS, reduced = GSH, oxidized = GSSG and total glutathione = TG, alpha-tocopherol, and the activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in the blood of three different groups (n = 20 each) exposed to airborne contamination associated with coal mining activities: underground workers directly exposed, surface workers indirectly exposed, residents indirectly exposed (subjects living near the mines), and controls (non-exposed subjects). Plasma TBARS were increased and whole blood TG and GSH levels were decreased in all groups compared to controls. Plasma alpha-tocopherol contents showed approximately half the values in underground workers compared to controls. GST activity was induced in workers and also in residents at the vicinity of the mining plant, whilst CAT activity was induced only in mine workers. SOD activity was decreased in all groups examined, while GPx activity showed decreased values only in underground miners, and GR did not show any differences among the groups. The results showed that subjects directly and indirectly exposed to coal dusts face an oxidative stress condition. They also indicate that people living in the vicinity of the mine plant are in health risk regarding coal mining-related diseases.
Resumo:
We have analysed the effect of spin contamination in the wavefunction of HOOO. At least, two solutions can be found for the HF wavefunction. One, lower in energy, presents a high spin contamination and gives qualitatively incorrect structural parameters. On the other hand, the less contaminated HF reference gives structural parameters that are in better agreement with experiment, and positive spin densities on all atoms. Some of the problems described during previous investigations of HOOO can now be traced to problems in the HF reference. For the first time we report a CCSD(T) estimation of the structure of HOOO cis employing a HF reference with small spin contamination. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The electrochemical detection of the hazardous pollutant 4-nitrophenol (4-NP) at low potentials, in order to avoid matrix interferences, is an important research challenge. This study describes the development, electrochemical characterization and utilization of a multiwall carbon nanotube (MWCNT) film electrode for the quantitative determination of 4-NP in natural water. Electrochemical impedence spectroscopy measurements showed that the modified surface exhibits a decrease of ca. 13 times in the charge transfer resistance when compared with a bare glassy carbon (GC) surface. Voltammetric experiments showed the possibility to oxidize a hydroxylamine layer (produced by the electrochemical reduction of 4-NP on the GC/MWNCT surface) in a potential region which is approximately 700 mV less positive than that needed to oxidize 4-NP, thus minimizing the interference of matrix components. The limit of detection for 4-NP obtained using square-wave voltammetry (0.12 mu mol L(-1)) was lower than the value advised by EPA. A natural water sample from a dam located in Sao Carlos (Brazil) was spiked with 4-NP and analyzed by the standard addition method using thee GC/MWCNT electrode, without any further purification step. the recovery procedure yielded a value of 96.5% for such sample, thus confirming the suitability of the developed method to determine 4-NP in natural water samples. The electrochemical determination was compared with that obtained by HPLC with UV-vis detection.
Resumo:
We present in this work a comprehensive investigation of the role played by dissolved tetrafluoroboric acid on the electrochemical response of a polycrystalline platinum electrode in acidic media. HBF(4) from two different suppliers was employed and characterized in terms of the amount of arsenic contamination by Inductively Coupled Plasma-Optical Emission Spectroscopy. The effect of different amounts of HBF(4) on the voltammetric profile of the Pt vertical bar HClO(4)(aq) interface was investigated by means of electrochemical quartz crystal nanobalance (EQCN). Despite the comparable cyclic voltammograms, the presence of arsenic in one of the two HBF(4) used resulted in dramatic variations in the mass change profile, which evidences the deposition/dissolution of arsenic prior to the surface oxidation. For the arsenic-free HBF(4), its effect on the mass change profile was mainly associated to anion adsorption. The impact of dissolved HBF(4) on the electro-oxidation of formic acid was rationalized in terms of two contributions: current enhancement at low potentials due to the arsenic-assisted formic acid electro-oxidation and inhibition at high potentials due to anion adsorption. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Concentrated solar power systems are expected to be sited in desert locations where the direct normal irradiation is above 1800 kWh/m2.year. These systems include large solar collector assemblies, which account for a significant share of the investment cost. Solarreflectors are the main components of these solar collector assemblies and dust/sand storms may affect their reflectance properties, either by soiling or by surface abrasion. While soiling can be reverted by cleaning, surface abrasion is a non reversible degradation.The aim of this project was to study the accelerated aging of second surface silvered thickglass solar reflectors under simulated sandstorm conditions and develop a multi-parametric model which relates the specular reflectance loss to dust/sand storm parameters: wind velocity, dust concentration and time of exposure. This project focused on the degradation caused by surface abrasion.Sandstorm conditions were simulated in a prototype environmental test chamber. Material samples (6cm x 6cm) were exposed to Arizona coarse test dust. The dust stream impactedthese material samples at a perpendicular angle. Both wind velocity and dust concentrationwere maintained at a stable level for each accelerated aging test. The total exposure time in the test chamber was limited to 1 hour. Each accelerated aging test was interrupted every 4 minutes to measure the specular reflectance of the material sample after cleaning.The accelerated aging test campaign had to be aborted prematurely due to a contamination of the dust concentration sensor. A robust multi-parametric degradation model could thus not be derived. The experimental data showed that the specular reflectance loss decreasedeither linearly or exponentially with exposure time, so that a degradation rate could be defined as a single modeling parameter. A correlation should be derived to relate this degradation rate to control parameters such as wind velocity and dust/sand concentration.The sandstorm chamber design would have to be updated before performing further accelerated aging test campaigns. The design upgrade should improve both the reliability of the test equipment and the repeatability of accelerated aging tests. An outdoor exposure test campaign should be launched in deserts to learn more about the intensity, frequencyand duration of dust/sand storms. This campaign would also serve to correlate the results of outdoor exposure tests with accelerated exposure tests in order to develop a robust service lifetime prediction model for different types of solar reflector materials.
Resumo:
The time elapsed between a trauma and tooth replantation usually ranges from 1 to 4 h. The chances of root surface damage are higher when tooth replantation is not performed immediately or if the avulsed tooth is not stored in an adequate medium. This invariably leads to necrosis of pulp tissue, periodontal ligament cells and cementum, thus increasing the possibility of root resorption, which is the main cause of loss of replanted teeth. This paper presents a comprehensive review of literature on root surface treatments performed in cases of delayed tooth replantation with necrotic cemental periodontal ligament. Journal articles retrieved from PubMed/MedLine, Bireme and Scielo databases were reviewed. It was observed that, when there are no periodontal ligament remnants and contamination is under control, replacement resorption and ankylosis are the best results and that, although these events will end up leading to tooth loss, this will happen slowly with no loss of the alveolar ridge height, which is important for future prosthesis planning.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper reports on the exposure of superhydrophobic polytetrafluoroethylene ( PTFE) coatings to common aqueous solutions which are used in biology, biotechnology and chemical sensor applications. Advancing contact angles as high as 173 degrees for aqueous solutions were measured on the PTFE surface. Water drop sliding angles at 2 degrees show a very low contact angle hysteresis. X-ray photoelectron spectroscopy measurements confirm that aqueous solutions can move or stay on the superhydrophobic surface without contamination. Owing to the chemical inertness of the polymer, these results indicate that superhydrophobic PTFE can be used in lab-on-a-chip and multi-sensor devices as well as in biological cultures, where aqueous solutions meet solid surfaces, without contaminating the interface.
Resumo:
Sterol biomarkers serve as an alternative method for detecting sewage pollution. Sterols were extracted from samples of surface sediment collected in Cubato (the Vila dos Pescadores and Vila Esperan double dagger a communities) and quantified using GC-MS after Soxhlet extraction, cleanup, and derivatization. Fecal contamination was evaluated based on the concentration of coprostanol and the ratio of the selected sterols. The most abundant sterol was cholestanol, followed by coprostanol. The concentrations of coprostanol in surface sediments ranged from a minimum of 4.21 mu g g(-1) dry sediment (Vila dos Pescadores station) to a maximum of 8.32 mu g g(-1) dry sediment (Vila Esperan double dagger a station). A coprostanol concentration of about 10 mu g g(-1) was found, indicating areas of high sewage contamination. Coprostanol levels at sewage stations were higher than in other Brazilian coastal areas, which may be attributed to the fraction of the population without sanitation services.
Resumo:
Tillandsia gardneri is a bromeliad with ornamental value and a wide geographical distribution over Brazil. However, due to habitat loss and illegal overcollection in the wild it is included as a vulnerable species in the official list of endangered plants of the State of Rio Grande do Sul, Brazil. The development of a protocol for T. gardneri seed propagation in vitro may be useful for reintroducing plants in their natural habitats, and for germplasm conservation. A difficult problem encountered during the establishment of an in vitro culture is explants disinfection, especially when working with endangered species, from which explant availability is restricted. Thus, the establishment of a sterilization protocol is crucial for the initiation and success of a micropropagation system for T. gardneri. The objective of this study was to evaluate the effect of sodium hypochlorite concentration and exposure time in seed and seedling surface disinfection, tissue sensitivity and development. Sodium hypochlorite solutions (10 or 20%/5, 10 or 15 min; 25%/5 or 10 min; and 50%/5 min) were effective in eliminating seed superficial contaminants. There was no significant difference among the effective sterilization treatments in relation to seed germination (%), and seedling length and number of leaves, after 120 days in vitro. Also, no damage to seed and seedling tissues were observed. Surface sterilization of seedlings, for initiation of an in vitro culture, required higher concentrations of sodium hypochlorite (25%/15 min; 20 or 50%/5, 10 or 15 min; and 40%/5 and 10 min) for controlling fungal and yeast contamination, compared to seed sterilization. No significant differences among these treatments were found in relation to seedling length and number of leaves, after 60 days in vitro.
Resumo:
Sediments from Guaratuba Bay (PR, Brazil), a marine protected area, were collected and evaluated for geochemistry and toxicity. High levels of P and acute toxicity were observed in some samples. Concentrations of Cu, Cd, Pb and Zn were relatively low; however, Cd levels eventually exceeded Threshold Effect Level. Toxicities were associated to nutrients and metals enrichment. Results suggest that impacts are incipient and occur only at specific sites, associated to multiple contamination sources. Despite sediments quality seems to range between good and fair, attention is required to land-use planning around Guaratuba Bay and controlling local pollution sources. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Control of cross-contamination between dental offices and prosthetic laboratories is of utmost importance to maintain the health of patients and dental office staff. The purpose of this study was to evaluate disinfection protocols, considering antimicrobial effectiveness and damage to the structures of prostheses. Solutions of 1% sodium hypochlorite, 2% chlorhexidine digluconate, 50% vinegar and sodium perborate were evaluated. Specimens were contaminated in vitro with standardized suspensions of Candida albicans, Streptococcus mutans, Escherichia coli, Staphylococcus aureus and Bacillus subtilis spores. Disinfection by immersion for 10. min was performed. Final counts of microorganisms were obtained using the plating method. Results were statistically compared by Kruskal-Wallis ANOVA and Dunn's test. The surface roughness of 40 specimens was analyzed before and after 10 disinfection cycles, and results were compared statistically using Student's t test. The solution of 50% vinegar was as effective as 1% sodium hypochlorite and 2% chlorhexidine against C. albicans, E. coli and S. mutans. The sodium perborate solution showed the lowest antimicrobial effectiveness. Superficial roughness increased after cycles in 1% sodium hypochlorite (p=0.02). Solutions of 1% sodium hypochlorite, 2% chlorhexidine and 50% vinegar were effective for the disinfection of heat-polymerized acrylic specimens. Sodium hypochlorite increased the superficial roughness. © 2013 King Saud Bin Abdulaziz University for Health Sciences.
Resumo:
Purpose: This study evaluated the effect of different surface conditioning protocols on the repair strength of resin composite to the zirconia core / veneering ceramic complex, simulating the clinical chipping phenomenon.Materials and Methods: Forty disk-shaped zirconia core (Lava Zirconia, 3M ESPE) (diameter: 3 mm) specimens were veneered circumferentially with a feldspathic veneering ceramic (VM7, Vita Zahnfabrik) (thickness: 2 mm) using a split metal mold. They were then embedded in autopolymerizing acrylic with the bonding surfaces exposed. Specimens were randomly assigned to one of the following surface conditioning protocols (n = 10 per group): group 1, veneer: 4% hydrofluoric acid (HF) (Porcelain Etch) + core: aluminum trioxide (50-mu m Al2O3) + core + veneer: silane (ESPE-Sil); group 2: core: Al2O3 (50 mu m) + veneer: HF + core + veneer: silane; group 3: veneer: HF + core: 30 mu m aluminum trioxide particles coated with silica (30 mu m SiO2) + core + veneer: silane; group 4: core: 30 mu m SiO2 + veneer: HF + core + veneer: silane. Core and veneer ceramic were conditioned individually but no attempt was made to avoid cross contamination of conditioning, simulating the clinical intraoral repair situation. Adhesive resin (VisioBond) was applied to both the core and the veneer ceramic, and resin composite (Quadrant Posterior) was bonded onto both substrates using polyethylene molds and photopolymerized. After thermocycling (6000 cycles, 5 degrees C-55 degrees C), the specimens were subjected to shear bond testing using a universal testing machine (1 mm/min). Failure modes were identified using an optical microscope, and scanning electron microscope images were obtained. Bond strength data (MPa) were analyzed statistically using the non-parametric Kruskal-Wallis test followed by the Wilcoxon rank-sum test and the Bonferroni Holm correction (alpha = 0.05).Results: Group 3 demonstrated significantly higher values (MPa) (8.6 +/- 2.7) than those of the other groups (3.2 +/- 3.1, 3.2 +/- 3, and 3.1 +/- 3.5 for groups 1, 2, and 4, respectively) (p < 0.001). All groups showed exclusively adhesive failure between the repair resin and the core zirconia. The incidence of cohesive failure in the ceramic was highest in group 3 (8 out of 10) compared to the other groups (0/10, 2/10, and 2/10, in groups 1, 2, and 4, respectively). SEM images showed that air abrasion on the zirconia core only also impinged on the veneering ceramic where the etching pattern was affected.Conclusion: Etching the veneer ceramic with HF gel and silica coating of the zirconia core followed by silanization of both substrates could be advised for the repair of the zirconia core / veneering ceramic complex.